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Abstract

Distributionally Robust Optimization (DRO) optimizes the worst-case risk within
an uncertainty set to resist distribution shifts. However, DRO suffers from over-
pessimism, leading to low-confidence predictions, poor parameter estimations as
well as poor generalization in practice. In this work, we uncover one probable
root cause of over-pessimism: excessive focus on noisy samples. To alleviate
the impact of noise, we incorporate data geometry into calibration terms in DRO,
resulting in our novel Geometry-Calibrated DRO (GCDRO) for regression. We
establish that our risk objective aligns with the Helmholtz free energy in statistical
physics, which could extend to standard DRO methods. Leveraging gradient flow
in Wasserstein space, we develop an approximate minimax optimization algorithm
with a bounded error ratio and elucidate how our approach mitigates noisy sample
effects. A full version of this paper can be found at https://arxiv.org/pdf/
2311.05054.pdf.

1 Introduction

Machine learning algorithms with empirical risk minimization (ERM) have been shown to perform
poorly under distributional shifts, especially sub-population shifts where substantial data subsets are
underrepresented in the average risk due to their small sample sizes. As an alternative, Distributionally
Robust Optimization (DRO) [28, 5, 4, 13, 39, 25, 18, 17] aims to optimize against the worst-case
risk distribution within a predefined uncertainty set. However, DRO methods have been found to
experience the over-pessimism problem in practice [20, 39] (i.e., low-confidence predictions, poor
parameter estimations, and generalization), recent studies have sought to address this issue. Recently,
Słowik et al. [35] observed that DRO may overly focus on sub-populations with higher noise levels,
leading to sub-optimal generalization. Consequently, they suggest incorporating calibration terms to
mitigate this issue. Nevertheless, applicable calibration terms either require expert knowledge or are
computationally intensive, and few practical algorithms have been proposed.

To devise a practical calibration term for DRO, we first attribute the probable root cause to the
excessive focus on noisy samples that frequently exhibit higher prediction errors. We theoretically
demonstrate that typical DRO algorithms tend to put higher densities on noisy samples, which,
based on a simple yet insightful linear example (in Appendix A), we prove will greatly amplify the
variance of estimated parameters, in line with the empirical findings reported in [39]. Furthermore,
(in Appendix B) we demonstrate that existing outlier-robust regression methods are not directly
applicable for mitigating noisy samples in DRO scenarios where both noisy samples and distribution
shifts coexist, highlighting the non-trivial nature of this problem.

In this work, inspired by the ideas in [35, 1], we design calibration terms, i.e., total variation and
entropy regularization, to prevent DRO from excessively focusing on random noisy samples. In
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conjunction with the Geometric Wasserstein uncertainty set [26] utilized in our methods, these
calibration terms effectively incorporate information from the data manifold. We prove that these
terms could effectively de-emphasizes noisy samples, leading to improved regulation of the worst-
case distribution in DRO. Furthermore, from a statistical physics perspective, we relate our risk
objective to the Helmholtz free energy, comprising three components: interaction energy, potential
energy, and entropy. This physical interpretation provides a novel perspective for understanding
different DRO methods by drawing parallels between the worst-case distribution and the steady state
in statistical physics, offering valuable insights for designing new DRO algorithms.

2 Preliminaries: Noisy Samples Bring Over-Pessimism in DRO

Notations. X ∈ X denotes the covariates, Y ∈ Y denotes the target, fθ(·) : X → Y is the predictor
parameterized by θ ∈ Θ. P̂N denotes the empirical counterpart of distribution P (X,Y ) with N
samples, and p = (p1, . . . , pN )T ∈ RN

+ is the probability vector. [N ] = {1, 2, . . . , N} denotes the
set of integers from 1 to N . The random variable of data points is denoted by Z = (X,Y ) ∈ Z .
The random vector of n dimension is denoted by h⃗n = (h1, . . . , hn)

T . GN = (V,E,W ) denotes
a finite weighted graph with N nodes, where V = [N ] is the vertex set, E is the edge set and
W = {wij}(i,j)∈E is the weight matrix of the graph. And (x)+ = max(x, 0).

Distributionally Robust Optimization (DRO) is formulated as:

θ∗(P ) = argmin
θ∈Θ

sup
Q∈P(P )

EQ[ℓ(fθ(X), Y )] (1)

where ℓ is the loss function (typically mean square error) and P(P ) = {Q : Dist(Q,P ) ≤ ρ} denotes
the ρ-radius uncertainty ball around the distribution P . Although designed to resist distribution shifts,
they have been observed to have poor generalization performances [20, 15, 35] in practice, which is
referred to as over-pessimism. In this section, we identify one of the root causes of the over-pessimism
of DRO: the excessive focus on noisy samples with typically high prediction errors.

Figure 1: Visualizing the Worst-Case Distribution for Different DRO Methods: We show the data
manifold and sample weights for each point, where blue points represent the major group, green ones
represent the minor group, and red ones are noisy samples. The bars display the total sample weights
of different groups, and the original group ratio is major (93.1%), minor (4.9%), (noisy 2%).

In this section, we identify one of the root causes of the over-pessimism of DRO: the excessive focus
on noisy samples with typically high prediction errors.
• We showcase DRO methods’ excessive focus on noisy samples in practice and reveal their probabil-
ity densities are linked to high prediction errors in worst-case distributions.
• Through a simple yet insightful regression example, we prove that such a phenomenon leads to
high estimation variances and subsequently poor generalization performance.
• We demonstrate that existing outlier-robust regression methods are not directly applicable for
mitigating noisy samples in DRO scenarios, emphasizing the non-trivial nature of this problem.

Problem Setting Given the underlying clean distribution Pclean = (1−α)Pmajor+αPminor, 0 <
α < 1

2 , the goal of DRO can be viewed as achieving good performance across all possible
sub-populations Pminor. Denote the observed contaminated training distribution by Ptrain. Based
on Huber’s ϵ-contamination model [21], we formulate Ptrain as:

Ptrain = (1− ϵ)Pclean + ϵQ̃ = (1− ϵ)(1− α)Pmajor︸ ︷︷ ︸
major sub-population

+(1− ϵ)αPminor︸ ︷︷ ︸
minor sub-population

+ ϵQ̃︸︷︷︸
noisy sub-population

, (2)

where Q̃ is an arbitrary noisy distribution (typically with larger noise scale), 0 < ϵ < 1
2 is the

noise level. The minor sub-population could represent any distribution with a proportion of α in
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P . However, we explicitly specify it here to emphasize the distinction between our setting and
the traditional Huber’s ϵ-contaminated setting, as the latter does not take sub-population shifts into
account.

Empirical Observations. Following a typical regression setting [13, 26], we demonstrate the
worst-case distribution of KL-DRO, χ2-DRO, and GDRO in Figure 3, where the size of each point is
proportional to its density. In this scenario, the underlying distribution P comprises a known major
sub-population (95%, blue points) and a minor sub-population (5%, green points). And the noise
level ϵ in Ptrain is 2%. DRO methods are expected to upweigh samples from minor sub-population
to learn a model with uniform performances w.r.t. sub-populations. However, from Figure 3, we
could observe that KL-DRO, χ2-DRO and GDRO excessively focus on noisy samples, resulting in a
noise level 10 to 15 times larger than the original.

We first analyze the worst distribution of KL-DRO, χ2-DRO and GDRO [26].

Proposition 2.1 (Worst-case Distribution). Let Q̂∗
N = (q∗1 , q

∗
2 , . . . , q

∗
N )T ∈ RN

+ denotes the worst-
case distribution, and ℓ(fθ(xi), yi) (abbr. ℓi) denotes the prediction error of sample i ∈ [N ]. For
different choices of Dist(·, ·) in P(P ) = {Q : Dist(Q,P ) ≤ ρ}, we have:
• KL-DRO: q∗i /q

∗
j ∝ exp(ℓi − ℓj);

• GDRO’s final state (gradient flow step T → ∞): q∗i /q
∗
j ∝ exp(ℓi − ℓj);

• χ2-DRO: q∗i /q
∗
j = (ℓi − λ)+/(ℓj − λ)+, and λ ≥ 0 is the dual parameter independent of i.

Proposition 2.1 demonstrates that for KL-DRO, χ2-DRO, and GDRO (large gradient flow step), the
relative density between samples is solely determined by their prediction errors, indicating that a
larger prediction error results in a higher density. However, in our problem setting, the presence of
noisy samples in Q̃ significantly interferes with this objective and hurts model learning.

Due to space limits, in Appendix A, we use a simple example with the weighted least square model
to demonstrate how this excessive focus on noisy samples can lead to high estimation variance,
ultimately causing over-pessimism. Based on the analysis above, we stress the importance of
integrating more data-derived information. In pursuit of this, we propose to leverage the unique
geometric properties that distinguish noisy samples from minor sub-populations to address this issue.

Relationship with Conventional Outlier-robust Regression. We would like to explain why
conventional outlier-robust regression methods cannot be directly applied to our problem. The
main challenge stems from the coexistence of noisy samples and minor sub-populations, both of
which typically exhibit high prediction errors, leading to a misleading worst-case distribution in
DRO. Conventional outlier-robust regression methods [9, 23, 10] primarily focus on mitigating the
effects of outliers without considering sub-population shifts. For instance, the L2-estimation-error of
outlier-robust linear regression is O(ϵ log(1/ϵ)) [9], where ϵ represents the noise level in Equation
1. However, as analyzed in Proposition 2.1 and demonstrated in Figure 3, during the optimization
of DRO, the noise level ϵ significantly increases, rendering even outlier-robust estimation quite
inaccurate. Moreover, [23] propose finding a pseudo distribution with minimal prediction errors to
avoid outliers (see Algorithm 5.2 in [23]). Nevertheless, this approach might inadvertently exclude
minor sub-populations, which should be the focus under sub-population shifts, due to the main
challenge: the coexistence of noisy samples and minor sub-populations. Zhai et al. [39] incorporate
this idea into DRO. Still, their method requires an implicit assumption that the prediction errors of
noisy samples are higher than those of minor sub-populations, which does not always hold in practice.
And Bennouna et al. [3] build the uncertainty set via two measures, KL-divergence and Wasserstein
distance, leading to a combined approach of KL-DRO and ridge regression. Despite this, as we
discussed earlier, DRO tends to increase the noise level in data, making it difficult to fix using ridge
regression.

3 Proposed Method

In this work, with a focus on regression, we introduce our Geometry-Calibrated DRO (GCDRO). The
fundamental idea is to utilize data geometry to distinguish between random noisy samples and minor
sub-populations. It is motivated by the fact that prediction errors for minor sub-populations typically
exhibit local smoothness along the data manifold, a property that is not shared by noisy samples.
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Formulation Given training dataset Dtr = {(xi, yi)}Ni=1 and a finite weighted graph GN =
(V,E,W ) representing the inherent structure of sample covariates (V is the node set and E denotes
the edge set). Denote the empirical marginal distribution as P̂X , the formulation of GCDRO is:

min
θ∈Θ

sup
q:GW2

GN
(P̂X ,q)≤ρ︸ ︷︷ ︸

Geometric Wasserstein set

{
RN (θ,q) :=

N∑
i=1

qiℓ(fθ(xi), yi)−
α

2
·

∑
(i,j)∈E

wijqiqj(ℓi − ℓj)
2

︸ ︷︷ ︸
Calibration Term I

−β ·
N∑
i=1

qi log qi︸ ︷︷ ︸
Calibration Term II

}
,

(3)
where ρ is the pre-defined radius of the uncertainty set, ℓi is the loss on the i-th sample, wij ∈ W

denotes the edge weight between sample i and j, GW2
GN

(·, ·) is the Discrete Geometric Wasserstein
Distance [26] (see Appendix C for a detailed review). α and β are hyper-parameters.

In our formulation, for any distribution q within the uncertainty set,
Calibration term I (

∑
(i,j)∈E wijqiqj(ℓi − ℓj)

2) calculates the graph total variation of prediction
errors along the data manifold that is characterized by GN . Intuitively, when selecting the worst-case
distribution, this term imposes a penalty on distributions that allocate high densities to random noisy
samples, as this allocation significantly amplifies the overall variation in prediction errors. Conversely,
this term does not penalize distributions that allocate high densities to minor sub-populations, as
their errors are smooth and have a relatively small impact on the total variation along the manifold.
Further, during the optimization of model parameter θ, this term acts like a variance term, resulting
in a quantile-like risk objective, which helps to mitigate the effects of outliers.
Calibration term II (

∑N
i=1 qi log qi) represents the negative entropy of distribution q. As discussed

in Section E, during optimization, this term transforms into a non-linear graph Laplacian operator
that encourages sample weights to be smooth along the manifold, avoiding extreme sample weights
in the worst-case distribution.

3.1 Free Energy Implications on Worst-case Distribution

We introduce the free energy implications of our risk objective RN (θ,q). Intuitively, the change of
sample weights across N samples (the inner maximization problem of RN (θ,q)) can be analogously
related to the dynamics of particles in a system, wherein the concentration of densities coincides
with the aggregation of particle masses at N distinct locations (in the case of infinite samples, these
locations converge to the data manifold). Building on this analogy, we can dive deeper into the
physics of particle interactions. When particles exist within a potential energy field, they are subject
to external forces. Simultaneously, there are interactions among the particles themselves, leading to a
constant state of motion within the system. In statistical physics, a key point of interest is identifying
when a system reaches a steady state. In a standard process like the reversible isothermal process, it is
established that spontaneous reactions consistently move in the direction of decreasing Helmholtz free
energy [16, 32, 14], which consists of interaction energy, potential energy and the negative entropy:

E(q) = q⊤Kq︸ ︷︷ ︸
Interaction Energy

+ q⊤V︸ ︷︷ ︸
Potential Energy

−β
N∑
i=1

(−qi log qi)︸ ︷︷ ︸
Temperature×Entropy

= −RN (θ,q). (4)

By taking V = −ℓ⃗ and Kij =
α
2wij(ℓi − ℓj)

2 for (i, j) ∈ E, our risk objective is a special case of
Helmholtz free energy, where the potential energy of sample i is −ℓiqi and the interaction energy
between sample i and j is α

2wij(ℓi − ℓj)
2qiqj . Specifically, such mutual interactions can manifest as

repulsive forces between adjacent particles, thereby preventing the concentration of mass in locations
where local prediction errors are significantly high. And this explains from a physical perspective
why our calibration term I could mitigate random noisy samples.

In Appendix D, we derive Proposition D.1 to offer physical interpretations to comprehend the worst-
case distribution of various DRO methods including KL-DRO, χ2-DRO, MMD-DRO, Marginal DRO
and GDRO. In Appendix E, we utilize gradient flow in Wasserstein space to derive an approximate
minimax optimization algorithm with a bounded error ratio.

3.2 Mitigate the Effects of Random Noisy Samples

Finally, we prove that our GCDRO method effectively de-emphasizes ’noisy samples’ with locally
non-smooth prediction errors. Due to the challenge of assessing intermediate states in gradient flow,

4



Figure 2: Results of real-world datasets with natural shifts. We do not manually add label noises here,
since real-world datasets intrinsically contain noises.

we focus on its final state (as Tin → ∞). Notably, in Proposition E.1, the convergence rate of gradient
flow is O(e−CTin), implying that an efficient approximation of the final state is feasible.

For the worst-case distribution q∗, we denote the density ratio between samples as γ(i, j) := q∗i /q
∗
j .

In sensitivity analysis, when only sample i is perturbed with label noises, we denote the density ratio
in the new worst-case distribution q̃∗ as γnoisy(i, j) := q̃∗i /q̃

∗
j . The sample weight sensitivity ξ(i, j)

is defined as ξ(i, j) = log γnoisy(i, j)− log γ(i, j), which measures how much density ratio changes
under perturbations on one sample. Larger ξ(i, j) indicates larger sensitivity to noisy samples.

Proposition 3.1. Assume ℓnoisy
i − ℓi ≥ 2(

∑
k∈N(i) q

∗
kwikℓk∑

k∈N(i) q
∗
kwik

− ℓi) which is locally non-smooth. For any
α > 0 (in Equation 3), we have ξGCDRO < ξGDRO. Furthermore, there exists M > 0 such that for any
α > M , we have ξGCDRO(i, j) < 0 < min{ξχ2−DRO(i, j), ξGDRO(i, j)(= ξKL-DRO(i, j))}, indicating
that GCDRO is not sensitive to locally non-smooth noisy samples.

In practice, we do a grid search over α ∈ [0.1, 10] on an independent held-out validation dataset to
select the best α. The complexity of gradient flow scales linearly with sample size.

4 Experiments

In this section, we test the empirical performances of our proposed GCDRO on real-world regression
datasets with natural distributional shifts. We compare with empirical risk minimization (ERM),
WDRO, two typical f -DRO methods, including KL-DRO, χ2-DRO [13], GDRO [26], HRDRO [3]
and DORO [39], where HRDRO and DORO are designed to mitigate label noises. We use three real-
world regression datasets, including bike-sharing prediction, house price, and temperature prediction,
and introduce natural distribution shifts like spatial-temporal shifts. For all these experiments, we use
a two-layer MLP model with mean square error (MSE). We use the Adam optimizer [22] with the
default learning rate 1e− 3. And all methods are trained for 5e3 epochs.

Due to space limits, we leave the results of simulation data in Appendix F, and experimental details
could be found in Appendix J.

Analysis (1) From the results in Figure 2, we could see that the performances of ERM drop a lot
under distributional shifts, and DRO methods have better performance as well as robustness. (2) Our
proposed GCDRO outperforms all baselines under strong shifts, with the most stable performances
under natural distributional shifts. (3) As for the kNN graph’s fitting accuracy of the data manifold,
we visualize the learned manifold in Appendix I and we could see that the learned kNN graph fits the
data manifold well. Besides, we show in Figure 5 that the performances of our GCDRO are relatively
stable across different choices of k. Also, our GCDRO only needs the input graph GN to represent
the data structure and any manifold learning or graph learning methods could be plugged in to give a
better estimation of GN .

5 Future Directions

Our work deals with the over-pessimism in DRO via geometric calibration terms and provides free
energy implications. The high-level idea could inspire future research on (1) relating free energy with
DRO; (2) designing more reasonable calibration terms in DRO; (3) incorporating data geometry in
general risk minimization algorithms.
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A Example of Weighted Least Square

Example (Weighted Least Square). Consider the data generation process as Y = kX + ξ, where
X,Y ∈ R and random noise ξ satisfies ξ ⊥ X , E[ξ] = 0 and E[ξ2] (abbr. σ2) is finite. As-
sume that the training dataset XD consists of clean samples {x(i)

c , y
(i)
c }i∈[Nc] and noisy samples

{x(i)
o , y

(i)
o }i∈[No] with σ2

c < σ2
o . Consider the weighted least-square model f(X) = θX . Denote the

sample weight of a clean sample (x(i)
c , y

(i)
c ) as w(i)

c ∈ R+, i ∈ [Nc], and the sample weight of a noisy
sample (x

(i)
o , y

(i)
o ) as w(i)

o ∈ R+, i ∈ [No] with
∑

i∈[Nc]
w

(i)
c +

∑
i∈[No]

w
(i)
o = 1. The variance of

the estimator θ̂ is given by:

Var[θ̂|XD] =

∑Nc
i=1(w

(i)
c )2(x

(i)
c )2σ2

c +
∑No

i=1(w
(i)
o )2(x

(i)
o )2σ2

o[∑Nc
i=1 w

(i)
c (x

(i)
c )2 +

∑No
i=1 w

(i)
o (x

(i)
o )2

]2 , (5)

where XD = {x(i)
c }Nc

1 ∪ {x(i)
o }No

1 are the sampled covariates in the dataset. Besides, the minimum
variance is achieved if and only if ∀1 ≤ i ≤ Nc, 1 ≤ j ≤ No, w

(j)
o /w

(i)
c = σ2

c/σ
2
o < 1.

From the results, we make the following remarks:
• If noisy samples have higher weights than clean samples (e.g., wo/wc > 1), the variance of the
estimated parameter θ̂ will be larger, suggesting that the learned θ̂ could be significantly unstable.
• In conjunction with Proposition 2.1, DRO methods tend to assign high weights to noisy samples,
which can lead to unstable parameter estimation.

B Relationship with Conventional Outlier-robust Regression

We would like to explain why conventional outlier-robust regression methods cannot be directly
applied to our problem. The main challenge stems from the coexistence of noisy samples and minor
sub-populations, both of which typically exhibit high prediction errors, leading to a misleading
worst-case distribution in DRO. Conventional outlier-robust regression methods [9, 23, 10] primarily
focus on mitigating the effects of outliers without considering sub-population shifts. For instance, the
L2-estimation-error of outlier-robust linear regression is O(ϵ log(1/ϵ)) [9], where ϵ represents the
noise level in Equation 1. However, as analyzed in Proposition 2.1 and demonstrated in Figure 3,
during the optimization of DRO, the noise level ϵ significantly increases, rendering even outlier-robust
estimation quite inaccurate. Moreover, [23] propose finding a pseudo distribution with minimal
prediction errors to avoid outliers (see Algorithm 5.2 in [23]). Nevertheless, this approach might
inadvertently exclude minor sub-populations, which should be the focus under sub-population shifts,
due to the main challenge: the coexistence of noisy samples and minor sub-populations. (author?)
[39] incorporate this idea into DRO. Still, their method requires an implicit assumption that the
prediction errors of noisy samples are higher than those of minor sub-populations, which does not
always hold in practice. And (author?) [3] build the uncertainty set via two measures, KL-divergence
and Wasserstein distance, leading to a combined approach of KL-DRO and ridge regression. Despite
this, as we discussed earlier, DRO tends to increase the noise level in data, making it difficult to fix
using ridge regression.

C Definition of Discrete Geometric Wasserstein Distance

We briefly revisit the definition of the discrete geometric Wasserstein distance. Given a weighted
finite graph GN = (V,E,W ), the probability set P(GN ) supported on the vertex set V is defined
as P(GN ) = {p ∈ RN |

∑N
i=1 pi = 1, pi ≥ 0, for i ∈ V }, and its interior is denoted as Po(GN ).

A velocity field v = (vij)i,j∈V ∈ RN×N on GN is defined on the edge set E satisfying that
vij = −vji if (i, j) ∈ E. ξij(p) is a function interpolated with the associated nodes’ densities pi, pj .
The flux function pv ∈ RN×N on GN is defined as pv := (vijξij(p))(i,j)∈E and its divergence
is defined as divGN

(pv) := −(
∑

j∈V :(i,j)∈E

√
wijvijξij(p))

N
i=1 ∈ RN . Then for distributions
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p0,p1 ∈ Po(GN ), the discrete geometric Wasserstein distance [8, 26] is defined as:

GW2
GN

(p0,p1) := inf
v


∫ 1

0

1

2

∑
(i,j)∈E

ξij(p(t))v
2
ijdt s.t.

dp

dt
+ divGN (pv) = 0,p(0) = p0,p(1) = p1

 .

(6)
Equation 6 computes the shortest (geodesic) length among all potential plans, integrating the total

kinetic energy of the velocity field throughout the transportation process. A key distinction from the
Wasserstein distance is that it only permits density to appear at the graph nodes.

D Free Energy Implications

Proposition D.1 offers physical interpretations to comprehend the worst-case distribution of various
DRO methods. We make some remarks: (1) current DRO methodologies, except MMD-DRO, do not
explicitly formulate the interaction term between samples in their design considerations (χ2-DRO
does not involve interaction between samples), despite the corresponding interaction energy between
particles being a common phenomenon in physics; (2) MMD-DRO simply uses kernel gram matrix
for interaction and lacks efficient optimization algorithms; (3) by considering this interaction energy,
our proposed GCDRO is capable of mitigating the impacts of random noisy samples.
Proposition D.1 (Free Energy Implications). The dual reformulations of some typical DRO methods

are equivalent to the free-energy-based minimax problem minθ∈Θ,λ≥0 maxq∈P

{
λρ− E(q, θ, λ)

}
with different choices of P, ρ and K,V,H[q] in the free energy E . Details are shown in Table 1.

Table 1: Free energy implications of some DRO methods. ∆N denotes the N -dimensional simplex,
η in marginal DRO is the dual parameter.

Method Energy Type Specific Formulation

Interaction Potential Entropy K V H[q] P

KL-DRO % " " - −ℓ⃗ H[q] ∆N

χ2-DRO " " % λI −ℓ⃗ - ∆N

MMD-DRO " " %
Kernel Gram

Matrix K
−ℓ⃗− 2λ

N K⊤1 - ∆N

Marginal χ2-DRO % " % - −(ℓ⃗− η)+ - ∆N with Hölder
continuity

GDRO % " " - −ℓ⃗ H[q]
Geometric

Wasserstein Set

GCDRO " " "
Interaction
Matrix K

−ℓ⃗ H[q]
Geometric

Wasserstein Set

Through free energy, we could understand the type of energy or steady state that DRO methods
strive to achieve, and design better interaction energy terms in DRO. Moreover, our optimization, as
outlined in Section E, could accommodate multiple quadratic forms of interaction energy.

E Optimization

Then we derive an approximate minimax optimization for our GCDRO. For the inner maximization
problem, we approximately deal with it via the gradient flow of −RN (θ,Q) w.r.t. Q in the geometric
Wasserstein space (Po(GN ),GWGN

). We show that the error rate is O(e−CTin) after Tin iterations
inner loop, which gives a nice approximation. For the outer minimization w.r.t. model parameters
θ, we analyze the convergence rate of O(1/

√
Tout) after Tout iterations outer loop when the risk

function satisfies Lipschitzian smoothness conditions.

Inner Maximization. We denote the Continuous gradient flow as q : [0, T ] → Po(GN ), the
probability density of sample i at time t is abbreviated as qi(t), and the Time-discretized gradient
flow with time step τ as q̂τ . For inner maximization, we utilize the τ -time-discretized gradient flow
[37] for −RN (θ,q) in the geometric Wasserstein space (Po(GN ),GW2

GN
) as:

q̂τ (t+ τ) = argmax
q∈Po(GN )

RN (θ,q)− 1

2τ
GW2

GN
(q̂τ (t),q). (7)

The gradient of q in Equation 7 is given as (when τ → 0):
dqi
dt

=
∑

(i,j)∈E

wijξij

(
q, ℓi − ℓj + β(log qj − log qi) + α

( ∑
h∈N(j)

(ℓh − ℓj)
2wjhqh −

∑
h∈N(i)

(ℓh − ℓi)
2wihqh

))
,

(8)
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where E is the edge set of GN , wij is the edge weight between node i and j, N(i) denotes the set of
neighbors of node i, ℓi denotes the loss of sample i, and ξij(·, ·) : P(GN )× R → R is:

ξij(q, v) := v ·
(
I(v > 0)qj + I(v ≤ 0)qi

)
, v ∈ R, (9)

which is the upwind interpolation commonly used in statistical physics and guarantees that the
probability vector q keeps positive. From the gradient, we could see that the entropy regularization
acts as a non-linear graph Laplacian operator to make the sample weights smooth along the manifold.
In our algorithm, we fix the steps of the gradient flow to be Tin and prove that the error ratio is e−CTin

compared with the ground-truth worst-case risk RN (θ,q∗) constrained in an ρ(θ, Tin)-radius ball.
Proposition E.1 (Approximation Error Ratio). Given the model parameter θ, denote the distri-
bution after time Tin as qTin(θ), and the distance to training distribution P̂X as ρ(θ, Tin) :=

GW2
GN

(P̂X ,qTin(θ)) (abbr. ρ(θ)). Assume RN (θ,q) is convex w.r.t q. Then define the ground-truth
worst-case distribution q∗(θ) within the ρ(θ)-radius ball as:

q∗(θ) := arg sup
q:GW2

GN
(P̂X ,q)≤ρ(θ)

RN (θ,q). (10)

The upper bound of the error rate of the objective function RN (θ,qTin) satisfies:

(RN (θ,q∗)−RN (θ,qTin))/
(
RN (θ,q∗)−RN (θ, P̂X)

)
< e−CTin , (11)

C = 2mλsec(L̂)λmin(∇2RN )
1

(r + 1)2
> 0, (12)

where L̂ is the Laplacian matrix of GN . λsec, λmin are the second smallest and smallest eigenvalue,
m, r are constants depending on RN , GN , β.

We make some remarks:
• For the assumption that RN is convex w.r.t. q, the Hessian is given by ∇2RN =
βdiag(1/q1, ..., 1/qN ) + 2K. Since K is a sparse matrix whose nonzero elements in each row
is far smaller than N , it is easily satisfied in empirical settings that the Hessian matrix ∇2R is
diagonally dominant and thus positive definite, making the inner maximization concave w.r.t q.
• During the optimization, our algorithm finds an approximate worst-case distribution that is close to
the ground-truth one within a ρ(θ)-radius uncertainty set. Our robustness guarantee is similar to [34]
(see Equation 12 in [34]).
• The error ratio is e−CTin , enabling to find a nice approximation efficiently with finite Tin steps.

Outer Minimization. The convergence property relies on the risk objective RN (θ,q). When
RN (θ,q) is smooth w.r.t. θ, the following proposition guarantees convergence to a stationary point
of problem 3 at a standard rate of O(1/

√
T ).

F Empirical Results on Simulation Data

Table 2: Results on the simulation data. We report the root mean square errors.

Weak Label Noise (noise level 0.5%) Strong Label Noise (noise level 5%)

Train (major) Train (minor) Test Mean Test Std Parameter
Est Error Train (major) Train (minor) Test Mean Test Std Parameter

Est Error
ERM 0.337 0.850 0.598 0.264 0.423 0.368 0.855 0.599 0.243 0.431
WDRO 0.337 0.851 0.589 0.292 0.424 0.368 0.857 0.600 0.268 0.432
χ2-DRO 0.596 0.765 0.680 0.088 0.447 1.072 0.708 0.875 0.193 0.443
KL-DRO 0.379 1.616 0.974 0.660 0.886 0.468 1.683 1.037 0.621 0.913
HRDRO 0.325 1.298 0.794 0.516 0.693 0.330 1.343 0.801 0.522 0.694
DORO 0.347 0.793 0.565 0.230 0.384 0.334 0.919 0.611 0.295 0.449
GDRO 0.692 0.516 0.605 0.094 0.198 0.618 0.752 0.677 0.063 0.421
GCDRO 0.411 0.554 0.482 0.070 0.190 0.494 0.591 0.540 0.044 0.268

Data Generation. We design simulation settings with both sub-population shifts and noisy samples.
The input covariates X = [S,U, V ]T ∈ R10 consist of stable covariates S ∈ R5, irrelevant ones
U ∈ R4 and the unstable covariate V ∈ R:

[S,U ] ∼ N (0, 2I9), Y = θTSS + 0.1S1S2S3 +N (0, 0.5), V ∼ Laplace(sign(r) · Y, 1/5 ln |r|), (13)

where θS ∈ R5 is the coefficients of the true model, |r| > 1 is the adjustment factor for each
sub-population, and Laplace(·, ·) denotes the Laplace distribution. From the data generation, the
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Figure 3: Visualizing the Worst-Case Distribution for Different DRO Methods: We show the data
manifold and sample weights for each point, where blue points represent the major group, green ones
represent the minor group, and red ones are noisy samples. The bars display the total sample weights
of different groups, and the original group ratio is major (93.1%), minor (4.9%), (noisy 2%).

relationship between S and Y stays invariant under different r, U ⊥ Y , while the relationship
between V and Y is controlled by r, which varies across sub-populations. Intuitively, sign(r)
controls whether the spurious correlation V -Y is positive or negative. And |r| controls the strength
of the spurious correlation: the larger |r| is, the stronger the spurious correlation is. Furthermore,
in order to conform to real data which are naturally assembled with label noises [39], we introduce
label noises by an ϵ proportion of labels as Y ′ ∼ N (0,Std(Y )). ϵ controls the noise level.
Settings. In training, we generate 9,500 points with r = 1.9 (majority, strong positive spurious
correlation V -Y ) and 500 points with r = −1.3 (minority, weak negative spurious correlation V -Y ).
In testing, we vary r ∈ {3.0, 2.3,−1.9,−2.7} to simulate different spurious correlations V -Y . We
use linear model with mean square error (MSE) and report the prediction root-mean-square errors
(RMSE) for each sub-population, the mean and standard deviation of prediction errors among all
testing sub-populations. Also, we report the parameter estimation errors ∥θ̂ − θ∗∥2 of all methods
(θ∗ = (θTS , 0, . . . , 0)

T ). The results over 10 runs are shown in Table 2.

Analysis. From Table 2, (1) compared with ERM, all typical DRO methods, especially χ2-DRO
and KL-DRO, are strongly affected by label noises. (2) Although DORO is designed to mitigate
outliers, it does not perform well under strong noises (κ = 5%), because it relies on the assumption
that noisy points have the largest prediction errors, which does not always hold. (3) Our proposed
GCDRO outperforms all baselines under different strengths of label noises, which demonstrates
its effectiveness. (4) Compared with GDRO, we could see that our calibration terms in Equation
3 is effective to mitigate label noises. From Figure 3, the worst-case distribution of our GCDRO
significantly upweighs on the minority (green points) and does not put much density on the noisy data
(red points), while the others put much higher weights on the noisy samples and perform poorly.

G Implementation

For our GCDRO, GN is constructed as a k-nearest neighbor (kNN) graph from training data once
and for all only at the initialization step. For large-scale datasets, we use NN-Descent to estimate the
kNN graph with an almost linear complexity of O(N1.14). Since the sample weights are transferred
along the edges of the graph, the simulation of gradient flow can be implemented similarly to
message propagation with DGL package [38], which scales linearly with sample size and enjoys
parallelization by GPU. The implementation above ensures the adaptability to large-scale data.

H Improvements of our work.

In Section 2, we have introduced the typical DRO methods in detail and demonstrated the over-
pessimism problem. Here we compare our work with several DRO works and clarify their differences.
(1) With MMD-DRO: MMD-DRO [36] also has a quadratic term in its dual reformulation, while
[36] focuses on the equivalence between MMD-DRO and Hilbert norms and there is no efficient
or applicable algorithm yet. Further, it remains the risk objective unchanged (the quadratic term is
from MMD distance) and just uses the Gaussian RBF kernel. Our work firstly incorporates the data
geometry into the design of the calibration term and demonstrates its relationship with Helmholtz
free energy, and we propose an applicable algorithm that could be used under deep models.
(2) With GDRO: GDRO [26] uses the discrete geometric Wasserstein distance to build the uncertainty
set, and intuitively demonstrates its superiority. Our work theoretically analyzes the over-pessimism
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problem and attributes the cause of over-pessimism to the excessive focus on noisy samples in
DRO. And for the risk objective function, our work further introduces the graph total variation term
to mitigate the effects of noisy samples, which is theoretically justified and empirically verified.
From our results, GDRO is heavily affected by noisy samples, while our GCDRO has a much better
performance. Further, this work relates the newly-proposed risk objective to the Helmholtz free
energy and unifies some typical DRO methods into it, which is a new perspective to view DRO
methods and could inspire future research.
(3) With DORO: DORO [39] proposes to dismiss data samples with the top losses and then performs
DRO, and we compare with it in our experiments. Theoretically, this method relies on the implicit
assumption that noisy samples must have larger prediction errors than hard clean samples. However,
this assumption does not always hold, and as shown in our experiments, it has some effects but does
not work very well.

I Why uses kNN graph?

Manifold Assumption. The data manifold hypothesis indicates that high-dimensional data often
lies in an unknown lower-dimensional manifold embedded in ambient space [33, 2, 24, 27, 6] and is
supported by strong evidence. From a theoretical perspective, (author?) [30, 29] prove that when such
hypothesis holds, manifold learning and density estimation scale exponentially with the low intrinsic
dimension, but otherwise scale exponentially with the high ambient dimension [7]. Therefore, as
(author?) [6] point out, one most plausible explanation for the success of machine learning methods
on real-world data is the existence of such lower intrinsic dimension, which enables learning on
datasets of fairly reasonable size, which is empirically verified by (author?) [31]. Also, for two of
the real-world tabular datasets used in this work, we visualize their 3-dimensional manifolds and
calculate their intrinsic dimensions in Figure 4.

Figure 4: Visualization of the 3-dimensional manifold of the tabular datasets, and the numbers in the
lower left represent the intrinsic dimension according to [24]

Our GCDRO algorithm uses an input-weighted graph GN to approximate the data manifold. The
kNN graph is a fundamental and basic way to represent the data structure, and manifold learning
is an area with intensive research. We have to clarify that manifold learning is not the focus of
this paper, which takes the data structure GN as input to design a DRO objective and optimization
algorithm that incorporates data geometric information for more reasonable worst-case distribution.
Notably, our GCDRO achieves significant performance in the experiments even with the simple kNN
representation of data structure. It proves that this direction for geometric-aware DROs is promising,
and our proposed method could efficiently leverage the geometric properties encoded in the input
graph to mitigate the effects of harmful data points (note that no target information is leaked into
GN ). Actually, our GCDRO is compatible with any manifold learning or graph learning method. We
do believe that a more accurate estimated data structure with advanced manifold learning algorithms
will further boost the performance of GCDRO, and we leave this to future work.

Not Sensitive to k. For the house pricing dataset, we plot the results of our GCDRO with varying
ks in Figure 5. We could see that the performance of our algorithm is not affected much.

J Experimental Details

Model & Loss function. For simulation data, we use linear models for all methods. For real-world
data, we use two-layer MLPs for all methods.
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Figure 5: Results with varying k.

Optimizer. For all experiments, we use Adam with a learning rate of 1e − 3 in PyTorch for all
methods.

Hyper-parameters. For KLDRO, WDRO and χ2-DRO, we grid search the radius of the uncertainty
set within the range of [1e−3, 2e2], and we select the best hyper-parameters according to their testing
performances. For GDRO, we grid search the number of gradient flow steps within the range of
[1e2, 2e3], the parameter β ∈ [1, 20] and we select the best hyper-parameters according to its testing
performances. For DORO, we set the noisy ratio to the ground-truth value for the simulation data,
and we grid search the ratio of noisy points within the range of [1e− 2, 5e− 1] for the real-world
data. For HRDRO, we use L1 loss as proposed in [3] and grid search ϵ ∈ [1e− 3, 1]. For GCDRO,
we grid search the number of gradient flow steps within the range of [1e2, 2e3], β ∈ [1, 20] and
α ∈ [1e− 1, 1e1]. We select the best hyper-parameters according to their testing performances.

Note that in our experiments, we found that model selection without domain information in the
validation set is very hard, which is also verified by [39, 19]. And we believe this is still an open
problem and is fairly non-trivial.

Real-World Datasets
(1) Bike-sharing dataset [11] contains the daily count of rental bikes in the Capital bike-sharing
system with the corresponding 11 weather and seasonal covariates. The task is to predict the count
of rental bikes of casual users. Note that the count of casual users is likely to be more random and
noisy, which is suitable to verify the effectiveness of our method. We split the dataset according to
the season for natural shifts. In the training data, the ratio of four seasons’ data is 9 : 7 : 5 : 3. We
test on the rest of the data and report the prediction error of each season.
(2) House Price dataset1 contains house sales prices from King County, USA. The task is to predict
the transaction price of the house via 17 predictive covariates such as the number of bedrooms, square
footage of the house, etc. We divide the data into 5 sub-populations according to the built year of
each house with each sub-population covering a span of 25 years. In training, we use data from the
first group (built year < 1920) and report the prediction error for each testing group.
(3) Temperature dataset [11] is largely composed of the LDAPS model’s next day’s forecast data,
in-situ maximum and minimum temperatures of present-day, and geographic auxiliary variables in
South Korea from 2013 to 2017. The task is to predict the next-day’s maximum air temperatures
based on the 22 covariates. We divide the data into 5 groups corresponding with 5 years. In the
training data, the ratio of five years’ data is 9 : 7 : 5 : 3 : 1. We test on the rest of the data and report
the prediction error of each year. More details could be found in Appendix.

K Examples on Label Noise

Theorem K.1. Assume that the training data is a mixture of nc clean samples {x(i)
c , y

(i)
c } drawn

from distribution Pc(X,Y ) and no noisy samples {x(i)
o , y

(i)
o } drawn from distribution Po(X,Y ).

Consider a linear data generation process, i.e. Y = kX + ξ and ξ ⊥ X,E[ξ] = 0 and E[ξ2] is finite

1https://www.kaggle.com/c/house-prices-advanced-regression- techniques/data
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(abbr. σ2). The regression model is parameterized as f(x) = θ · x and trained with Weighted Least
Square estimation:

θ̂ = argmin
θ

nc∑
i=1

w(i)
c ∥(y(i)c − θ · x(i)

c )∥2 +
no∑
i=1

w(i)
o ∥(y(i)o − θ · x(i)

o )∥2. (14)

s.t.

nc∑
i=1

w(i)
c +

no∑
i=1

w(i)
o = 1, (15)

where w
(i)
c , w

(i)
o ≥ 0 are weights on clean and noisy samples respectively, and σ2

c < σ2
o . Then the

variance of the least square estimate θ̂ is given by:

Var[θ̂|XD] =

∑nc

i=1(w
(i)
c )2(x

(i)
c )2σ2

c +
∑no

i=1(w
(i)
o )2(x

(i)
o )2σ2

o[∑nc

i=1 w
(i)
c (x

(i)
c )2 +

∑no

i=1 w
(i)
o (x

(i)
o )2

]2 , (16)

where XD = {x(i)
c } ∪ {x(i)

o } is the sampled covariates in the dataset. Further, the variance of the
estimator θ̂ achieves the minimum if and only if:

∀1 ≤ i ≤ nc, 1 ≤ j ≤ no, γ(i, j) = w(j)
o /w(i)

c = σ2
c/σ

2
o , (17)

where γ(i, j) denotes the sample weight ratio between i and j.

The theorem is a direct corollary of the following lemma.

Lemma K.1. Assume that the training data contains n samples {x(i), y(i)}. Consider a linear data
generation process with heterogeneous noise, i.e. y(i) = kx(i) + ξi with ξi ⊥ X,E[ξi] = 0, and
E[ξ2i ] is finite. The regression model is parameterized as f(x) = θ · x and trained with Weighted
Least Square estimation:

θ̂ = argmin
θ

n∑
i=1

w(i)∥(y(i) − θ · x(i))∥2. (18)

s.t.

n∑
i=1

w(i) = 1, (19)

where w(i) ≥ 0 are sample weights. Then the variance of the least square estimate θ̂ is given by:

Var[θ̂|XD] =

∑n
i=1(w

(i))2(x(i))2σ2
i[∑n

i=1 w
(i)(x(i))2

]2 , (20)

where XD = {x(i)} is the sampled covariates in the dataset. Further, the variance of the estimator θ̂
achieves the minimum if and only if:

∀1 ≤ i ≤ n, 1 ≤ j ≤ n, w(i)σ2
i = w(j)σ2

j . (21)

Proof. According to the heterogeneous noise distribution, let y(i) = x(i) + ϵi, where ϵi ∼ N (0, σ2
i ).

The least square estimation of θ̂ is given by:

θ̂ = k +

∑n
i=1 w

(i)x(i)ϵi∑n
i=1 w

(i)(x(i))2
. (22)

Since E[θ̂|XD] = k, we have

Var[θ̂|XD] = E
∣∣∣∣ ∑n

i=1 w
(i)x(i)ϵi∑n

i=1 w
(i)(x(i))2

∣∣∣∣2 (23)

=

∑n
i=1(w

(i))2(x(i))2σ2
i[∑n

i=1 w
(i)(x(i))2

]2 . (24)
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Next, we solve the minimum of Eq.20 w.r.t. sample weights w(i). Let αi = w(i)(x(i))2. We could
formulate the variance in Eq.20 as a function of α = (α1, ..., αn):

V (α) =

∑n
i=1 α

2
iσ

2
i /(x

(i))2

(
∑n

i=1 αi)
2 . (25)

Since V (λα) = V (α) for any λ > 0, we could assume
∑n

i=1 αi = 1 without loss of generality.
Then the minimization of V (α) is equivalent to:

min
α

V (α) =

n∑
i=1

α2
iσ

2
i /(x

(i))2. (26)

s.t.

n∑
i=1

αi = 1. (27)

The first-order KKT condition gives:

∃C,∀1 ≤ i ≤ n, α∗
i = C(x(i))2/σ2

i , (28)

from which we can solve:

α∗
i =

(x(i))2/σ2
i∑n

j=1(x
(j))2/σ2

j

. (29)

Since ∇2
αV (α) = diag

[
2σ2

1/(x
(1))2, ..., 2σ2

n/(x
(n))2

]
is always positive definite, Eq.29 minimizes

V (α). Correspondingly w(i) ∝ 1/σ2
i , which finishes the proof.

L Proofs

L.1 Proof of Proposition 2.1

Proof. (1) For KL-divergence as the distance function, we have the following optimization problem
under finite samples.

min
θ∈Θ,λ≥0

sup
p∈∆n

{
n∑

i=1

piℓ(fθ(xi), yi)− λ

n∑
i=1

pi log pi + λ(ϵ− log n)

}
, (30)

Solve the inner supremum problem, and the worst-case distribution is like:

pi = exp

(
ℓi − η

λ
− 1

)
, η(ℓ) = λ log λ+ λ log

(
n∑

i=1

exp(
ℓi
λ

− 1)

)
, (31)

and the objective function becomes:

min
θ∈Θ,λ≥0

λ log

(
n∑

i=1

exp(
ℓ(fθ(xi), yi))

λ
)

)
+ λ(ϵ+ log λ− log n). (32)

And we could compare the sample weights of different samples as:

pi
pj

= exp(
ℓi − ℓj

λ
). (33)

(2) For χ2-divergence which is defined as f(x) = (x − 1)2, we have the following optimization
problem.

min
θ∈Θ,λ≥0

sup
p∈∆n

{
n∑

i=1

piℓ(fθ(xi), yi) + λϵ− λ

n

n∑
i=1

(npi − 1)2

}
. (34)

Solve the inner supremum problem, and we have the worst-case distribution like:

pi =
1

λn
(ℓi + λ− η)+, (35)
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and the objective function becomes:

min
θ∈Θ,λ≥0,η∈R

n∑
i=1

1

2λ
(ℓi + λ− η)2+ + λϵ+ η − λ

2
. (36)

And we could compare the sample weights of different samples as:
pi
pj

=
(ℓi + λ− η)+
(ℓj + λ− η)+

, (37)

if pj > 0.

(3) For Maximal Mean Discrepancy (MMD) distance, we have the following optimization problem:

sup
p

{
n∑

i=1

piℓi + λϵ− λ(p− 1

n
)TK(p− 1

n
)

}
(38)

s.t.
n∑

i=1

pi = 1 (39)

pi ≥ 0, for i = 1, . . . , n (40)
Solve the inner supremum problem, and we have the worst-case distribution like:

p∗ =
1

2λ
K−1(ℓ− η +

2λ

n
K1)+, (41)

and the objective function becomes:

min
θ∈Θ,λ≥0,η∈R

1

4λ
(ℓ+

2λ

n
K1 − η)+K

−1(ℓ+
2λ

n
K1 − η)+ + λϵ+ η − λ

n2
1TK1. (42)

L.2 Proof of Proposition 3.1

Proof. It is easy to prove that the final state of RN (θ, q) w.r.t. q is given as

q∞i =
1

Z
exp(

ℓi − α(
∑

j∈N(i) q
∞
j wij(ℓi − ℓj)

2)

β
), (43)

where

Z =

N∑
i=1

exp(
ℓi − α(

∑
j∈N(i) q

∞
j wij(ℓi − ℓj)

2)

β
). (44)

(1) When β → ∞, q∞i → 1
N . When β ≪ ∞, the gradient flow is like:

dqi
dt

=
∑

(i,j)∈E

wijξij

(
ℓi−ℓj+β(log qj−log qi)+α

( ∑
h∈N(j)

(ℓh−ℓj)
2whjqh−

∑
h∈N(i)

(ℓh−ℓi)
2whiqh

))
,

(45)
and

ξij(v) := v ·
(
I(v > 0)qj + I(v ≤ 0)qi

)
. (46)

Therefore, when qi > qj and ℓi > ℓj , we have log qj − log qi < 0, which decreases the gradient of
qi. Thus, the entropy term prompts the sample weights to be smooth between neighbors. When the
sample weight of sample i is larger than its neighbors, this term will decrease the gradient of qi to
prevent it from gaining too much weights.
(3) Under the assumptions, we have

(
∑

j∈N(i)

q∞j wij(ℓi +∆i − ℓj)
2 −

∑
j∈N(i)

q∞j wij(ℓi − ℓj)
2) (47)

=
∑

j∈N(i)

q∞j wij(2ℓi − 2ℓj +∆i)∆i (48)

≥∆i

( ∑
j∈N(i)

q∞j wij(∆i − 2Lx∥xi − xj∥2)
)

(49)

>∆i. (50)
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Therefore, define δi = ℓnoisy
i − ℓi, it is easy to prove that for α > 0

ξGCDRO(i, j) < ξGDRO(i, j), (51)

and when α > 1∑
k∈N(i) qkwik(2ℓi−2ℓk+δi)

, we have ξGCDRO(i, j) < 0.

L.3 Proof of Proposition D.1

Proof. Please refer to the proof of Proposition 2.1 for the proof of KL-DRO, χ2-DRO and MMD
DRO. For marginal DRO, it is easy to prove following [12]. For GDRO, it is easy to prove following
[26].

L.4 Proof of Proposition E.1

Proof. The proof is based on the Theorem 5 in [8]. From [8], we have

RN (q∞)−RN (q(t)) ≤ e−Ct(RN (q∞)−RN (q0)). (52)

Furthermore,

C := 2mλsec(L̂)λmin(∇2RN )
1

(r + 1)2
> 0, (53)

and

r =
√
2k max

(i,j)∈E
wij

∥HessRN∥1
λmin(HessRN )1.5

1−m

m2

λmax(L̂)

λsec(L̂)2

√
RN (q0)−RN (q∞), (54)

where k denotes the number of neighbors in the kNN graph, L̂ is the graph Laplacian matrix, λsec, λmin
are the second smallest and smallest eigenvalue, and

∥HessRN∥1 = sup
q∈P(GN )

∥HessRN (q)∥1, λmin(HessRN ) = min
q∈P(GN )

λmin(HessRN (q)), (55)

and
m =

1

2
(

1

(1 + 2M)
1
β

)N−2 min{ 1

(1 + 2M)
1
β

),
1

N
}. (56)

Then denote the real worst-case distribution within the ϵ(θ)-radius discrete Geometric Wasserstein-
ball as q∗, that is,

q∗ = arg sup
q:GW2

GN
(P̂tr,q)≤ϵ(θ)

RN (θ, q), (57)

and we have

RN (q∞)−RN (q∗)+RN (q∗)−RN (q(t)) ≤ e−Ct(RN (q∞)−RN (q∗)+RN (q∗)−RN (q0)). (58)

Therefore, we have

RN (q∗)−RN (q(t)) ≤ e−Ct(RN (q∗)−RN (q0))− (1− e−Ct)(RN (q∞)−RN (q∗)), (59)

and
RN (q∗)−RN (q(t))

RN (q∗)−RN (q0)
≤ e−Ct − (1− e−Ct)

RN (q∞)−RN (q∗)

RN (q∗)−RN (q0)
< e−Ct. (60)
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