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Causality & Invariance

1

1Causality for Machine Learning. Cloudera’s Fast Forward Labs
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Invariance Property

There are several versions of the Invariance Assumption.

Assumption (Invariance Assumption2)
There exists random variable Φ(X) such that for all e1, e2 ∈ supp(E), we have

Pe1 (Y |Φ(X)) = Pe2 (Y |Φ(X)) (1)

• This assumption is equivalent to Y ⊥ E|Φ(X), indicating that the relationship between Φ(X)
and Y remains invariant across environments, which is also referred to as causal relationship.

Assumption (Invariance Assumption 3)
There exists random variable Φ(X) such that for all e1, e2 ∈ supp(E), we have

Ee1 [Y |Φ(X)] = Ee2 [Y |Φ(X)] (2)

2Koyama, Masanori, and Shoichiro Yamaguchi. "Out-of-distribution generalization with maximal invariant
predictor." (2020).

3Arjovsky, M., Bottou, L., Gulrajani, I., & Lopez-Paz, D. (2019). Invariant risk minimization. arXiv preprint
arXiv:1907.02893.
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Advantage on the Out-of-Distribution Generalization Problem

For prediction problem, the invariance property is enough (we only care about Pa(Y )). ⇒ Do not
need the whole causal graph.

• Φ∗(X) = arg max
Φ:Y⊥E|Φ

I(Y ;Φ(X)) is referred to as (Maximal) Invariant Predictors.

• Under some assumptions, E[Y |Φ∗(X)] can achieve OOD optimality4.

4Koyama, Masanori, and Shoichiro Yamaguchi. "Out-of-distribution generalization with maximal invariant
predictor." (2020).
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Advantage on the Out-of-Distribution Generalization Problem

• Out-of-Distribution Generalization Problem(OOD Problem) is proposed in order
to guarantee the generalization ability under distributional shifts, which can be
formalized as:

θOOD = argmin
θ

max
e∈supp(E)

Le(θ;X ,Y ) (3)

where
• E is the random variable on indices of all possible environments, and for each

environment e ∈ supp(E), the data distribution is denoted as Pe(X , Y ).
• The data distribution Pe(X , Y ) can be quite different among environments in supp(E).
• Le(θ; X , Y ) denotes the risk of predictor θ on environment e, whose formulation is

given by:
Le(θ; X , Y ) = EX,Y∼Pe ["(θ; X , Y )] (4)
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Invariant Risk Minimization 5

• Idea: learn an invariant predictor Φ with invariant P(Y |Φ, e) for e ∈ supp(E)

• Approximation:

5Arjovsky, M., Bottou, L., Gulrajani, I., & Lopez-Paz, D. (2019). Invariant risk minimization. arXiv preprint
arXiv:1907.02893.
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Invariant Risk Minimization 6

6Arjovsky, M., Bottou, L., Gulrajani, I., & Lopez-Paz, D. (2019). Invariant risk minimization. arXiv preprint
arXiv:1907.02893.
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Invariance Property

Invariance to What? ⇒ Some limitations in practice.
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Limitation 1: No environment labels

Modern datasets are frequently assembled by merging data from multiple sources
without explicit source labels, which means there are not multiple environments but
only one pooled dataset.
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Limitation 2: Quality of environments

• Heterogeneous Enough?
• whether environments are heterogeneous to reveal the variant relationships
• for example, all environments are the same ⇒ useless

• Homogeneous Enough?
• whether the invariance holds among the environments
• for example, some environments are polluted, and only random noises Φ satisfies

Y ⊥ E|Φ ⇒ useless
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Heterogeneity

Data are collected from multiple sources, which induces latent heterogeneity.
• ERM excessively focuses on the majority and ignores the minor components in

data.
• Overall Good = Majority Perfect + Minority Bad
• Majority and Minority can change across different data sources/environments.
• Latent Heterogeneity renders ERM break down under distributional shifts.

Insights: We should leverage the latent heterogeneity in data and develop more
rational risk minimization approach to achieve Majority Good and Minority Good,
resulting in our Invariant Learning Problem under Latent Heterogeneity.
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Leverage the Heterogeneity to Learn Invariance

7

7Causality for Machine Learning. Cloudera’s Fast Forward Labs
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Measure the Predictive Heterogeneity8

• Idea: measure the heterogeneity inside data via information gain

8Measure the Predictive Heterogeneity. Jiashuo Liu et al. ICLR 2023.
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Invariant Learning Problem under Latent Heterogeneity

Assumption (Heterogeneity Assumption)

For random variable pair (X ,Φ∗) and Φ∗ satisfying the Invariance Assumption, using
functional representation lemma11, there exists random variable Ψ∗ such that
X = X(Φ∗,Ψ∗), then we assume Pe(Y |Ψ∗) can arbitrary change across environments
e ∈ supp(E).

Problem (Invariant Learning Problem under Latent Heterogeneity)

Given heterogeneous dataset D = {De}e∈supp(Elatent )
without environment labels, the

task is to generate environments Elearn and learn invariant model under learned Elearn
with good OOD performance.

11El Gamal, A. and Kim, Y.-H. Network information theory. Network Information Theory, 12 2011.
Jiashuo Liu Tsinghua University
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Empirical Algorithm 1: Heterogeneous Risk Minimization12

• This work temporarily focuses on a simple but general setting, where
X = [Φ∗,Ψ∗]T at the raw feature level.

• The HRM framework contains two modules, named Heterogeneity Identification
module Mc and Invariant Prediction module Mp .

• The two modules can mutually promote each other, meaning that the invariant
prediction and the quality of Elearn can both get better and better.

• We adopt feature selection to accomplish the conversion from Φ(X) to Ψ(X).
• Under our raw feature setting, we simply let Φ(X) = M $ X and Ψ(X) = (1 − M)$ X .

12Jiashuo Liu, Zheyuan Hu, Peng Cui et al. Heterogeneous Risk Minimization. In ICML 2021.
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Empirical Algorithm 2: Kernelized Heterogeneous Risk Minimization(KerHRM13)

• Step 0:
fw (X) ≈ fw0 (X) + ∇w fw0 (X)T (w − w0) (5)

= fw0 (X) + Φ(X)T (w − w0) (6)

≈ fw0 (X) + USV T (w − w0) (7)

= fw0 (X) + Ψ(X)
(

V T (w − w0)
)

= fw0 (X) + Ψ(X)θ (8)

where Ψ(X) ∈ Rk is called the reduced Neural Tangent Features(Reduced NTFs),
which convert the complicated data, non-linear setting into raw feature data, linear
setting.

13Jiashuo Liu, Zheyuan Hu, Peng Cui et al. Kernelized Heterogeneous Risk Minimization. In NeurIPS 2021.
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Surprising Results

• DKL denotes KL(P1(Y |C)‖P2(Y |C))
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Measure the Stability

• Measure via Directional Worst-Case14
• Sign Stability:

s = exp(− inf
Q

DKL(Q‖Ptr ))

s.t. sign(θ(Q)) )= sign(θ(Ptr ))
(9)

• Beyond Omni-Directional:
s = exp(− inf

Q:Q(·|E)=Ptr (·|E)
DKL(Q‖Ptr ))

s.t. sign(θ(Q)) )= sign(θ(Ptr ))
(10)

which only considers the shifts on Q(E).
• Measure via Prediction Risk15

Ir (P) := inf
Q

{
DKL(Q‖Ptr ) : EQ [R] ≥ r

}
(11)

14Distributionally robust and generalizable inference. Dominik Rothenhäusler, Peter Bühlmann.
15Namkoong et al. Minimax Optimal Estimation of Stability Under Distribution Shift.
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Sub-population
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Distributional Stability
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Relationship with Strict Invariance
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OOD Generalization Regret Bounds
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