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Causality & Invariance

Full Causal Graph Fewer Assumptions
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1Causality for Machine Learning. Cloudera's Fast Forward Labs
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Invariance Property

There are several versions of the Invariance Assumption.

Assumption (Invariance Assumption?)

There exists random variable ®(X) such that for all e;, e; € supp(E), we have
PE(Y|®(X)) = P2(Y]d(X)) ¢))

® This assumption is equivalent to Y L E|®(X), indicating that the relationship between ®(X)
and Y remains invariant across environments, which is also referred to as causal relationship.

Assumption (Invariance Assumption >)

There exists random variable ®(X) such that for all e;, e; € supp(E), we have
ET[Y|®(X)] = E2[Y|®(X)] (2

ZKoyama, Masanori, and Shoichiro Yamaguchi. "Out-of-distribution generalization with maximal invariant
predictor." (2020).

3Arjovsky, M., Bottou, L., Gulrajani, I., & Lopez-Paz, D. (2019). Invariant risk minimization. arXiv preprint
arXiv:1907.02893.
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Advantage on the Out-of-Distribution Generalization Problem

Machine Learning Casuality

W~ '\_/'\_, .
\[~

For prediction problem, the invariance property is enough (we only care about Pa(Y)). = Do not
need the whole causal graph.

® d*(X) =arg o_plaé‘o]l(Y; ®(X)) is referred to as (Maximal) Invariant Predictors.

® Under some assumptions, E[Y|®*(X)] can achieve OOD optimality*.

4Koyama, Masanori, and Shoichiro Yamaguchi. "Out-of-distribution generalization with maximal invariant
predictor." (2020).
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Advantage on the Out-of-Distribution Generalization Problem

® Out-of-Distribution Generalization Problem(OOD Problem) is proposed in order
to guarantee the generalization ability under distributional shifts, which can be
formalized as:
Ooop = argmin  max _ L(6; X,Y) 3)
0 ecsupp(&)
where
® £ is the random variable on indices of all possible environments, and for each
environment e € supp(€), the data distribution is denoted as P°(X, Y).
® The data distribution P¢(X, Y) can be quite different among environments in supp(€).
® £°(6; X, Y) denotes the risk of predictor 6 on environment e, whose formulation is
given by:
L5(0; X, Y) =Ex ypell(0; X, Y)] (4)

Jiashuo Liu

Data Heterogeneity & Invariance in Ou



Causality & Invariance
00000800

Invariant Risk Minimization °

® |dea: learn an invariant predictor ® with invariant P(Y|®,e) for e € supp(&)

min Z R*(wo ®)

P:X>H
wH—Y e€€r
subject to w € argmin R*(w o @), for all e € &;.
wH—-Y
® Approximation:
‘ min 37 RE@®) + A+ [ Vupero B (w- D)2, (IRMv1)
XY er

SArjovsky, M., Bottou, L., Gulrajani, |., & Lopez-Paz, D. (2019). Invariant risk minimization. arXiv preprint
arXiv:1907.02893.
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Invariant Risk Minimization ©

I Train env. 2 (e=0.1) B Test env. (e=0.9)
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I., & Lopez-Paz, D. (2019). Invariant risk minimization. arXiv preprint

(’Arjovsky, M., Bottou, L., Gulrajani,

arXiv:1907.02893.
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Invariance Property

Invariance to What? = Some limitations in practice.

Env1 Env2

® When environment set £ contains Envl and Env2: grass is invariant.

® When environment set £ contains Envl and Env3: grass is variant.

Jiashuo Liu
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Limitation 1: No environment labels

Modern datasets are frequently assembled by merging data from multiple sources
without explicit source labels, which means there are not multiple environments but
only one pooled dataset.
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Limitation 2: Quality of environments

e Heterogeneous Enough?

® whether environments are heterogeneous to reveal the variant relationships
® for example, all environments are the same = useless

e Homogeneous Enough?

® whether the invariance holds among the environments
® for example, some environments are polluted, and only random noises ¢ satisfies
Y L E|® = useless

Jiashuo Liu
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Heterogeneity

Data are collected from multiple sources, which induces latent heterogeneity.

® ERM excessively focuses on the majority and ignores the minor components in
data.

® QOverall Good = Majority Perfect 4+ Minority Bad
® Majority and Minority can change across different data sources/environments.

® Latent Heterogeneity renders ERM break down under distributional shifts.

Train

Focus
~

Ignore

Insights: We should leverage the latent heterogeneity in data and develop more
rational risk minimization approach to achieve Majority Good and Minority Good,
resulting in our Invariant Learning Problem under Latent Heterogeneity.

Jiashuo Liu

Data Heterogeneity & Invariance in O



Invariance & Heterogeneity
0O0000e0000

Leverage the Heterogeneity to Learn Invariance

Another compelling but untested option is to try combining IRM with some sort

of clustering tdsegment a single dataset into environmentsl[3—7] The question
would be how to cluster in such a way thatlmeaningful and diversel

environments are defined. Since existing clustering approaches are purely
correlative, and - as such - vulnerable to spurious correlations, this could prove
challenging.

Studying the impact of environment selection, andlhow to create or curatel
datasets with multiple environments would be a valuable contribution to making
invariance-based methods more widely applicable. (The authors of An Empirical
Study of Invariant Risk Minimization reach the same conclusion.) 7

7Causality for Machine Learning. Cloudera's Fast Forward Labs
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Measure the Predictive Heterogeneity®

® |dea: measure the heterogeneity inside data via information gain

Definition 3 (Interaction Heterogeneity). Let X, Y be random variables taking values in X x ).
Denote the set of random categorical variables as C, and take its subset & C C. Then & is an
environment set iff there exists £ € & such that X, Y 1l £ & € & is called an environment
variable. The interaction heterogeneity between X andY w.rt. the environment set & is defined as:

HE(X,Y) = sup I(Y; X|€) — I(Y; X). ©)
€

Definition 4 (Conditional Predictive V-information). Let X,Y be two random variables taking
values in X x Y and £ be an environment variable. The conditional predictive V-information is

defined as:
Iy(X = Y|€) = Hy(Y]0,€) — Hy(Y|X, €), %)
where Hy(Y|0,€) and Hy,(Y|X, £) are defined as:
Hy(Y|X,€) = Eene [}Iel\f)]Ez,yNX,yw:e[— log f[z](y)]] - ®
HUY10.6) = Eove [ 00 By e o8 S]] )

8Measure the Predictive Heterogeneity. Jiashuo Liu et al. ICLR 2023.
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Measure the Predictive Heterogeneity®

Definition 4 (Conditional Predictive V-information). Let X,Y be two random variables taking
values in X x Y and & be an environment variable. The conditional predictive V-information is

defined as:
Iy(X — Y|€) = Hy(Y]0,€) — Hy(Y|X, E), @
where Hy(Y|0,€) and Hy (Y | X, €) are defined as:
Hy(Y|X,E) = Eene [ inf Eaynx,vie=e[~log f [z](y)]] . ®
HY(V10,) = Evne [ 100 By o8 0] ©

Definition 5 (Predictive Heterogeneity). Let X, Y be random variables taking values in X x Y and
& be an environment set. The predictive heterogeneity for the prediction X — Y with respect to &
is defined as:

HEX = Y) =sup (X = V) —Iy(X = Y), 10)
Ee&

where I,(X — Y) is the predictive V-information following from Definition ‘2{

9Measure the Predictive Heterogeneity. Jiashuo Liu et al. ICLR 2023.
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Measure the Predictive Heterogeneity'®
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(a) Division of wheat and rice cultivation areas (b) Division learned by our algorithm

Figure 1: Results on the crop yield data. We color each region according to its main crop type, and
the shade represents the proportion of the main crop type after smoothing via k-means (k = 3).

Sub-population 1 Sub-population 2

0Measure the Predictive Heterogeneity. Jiashuo Liu et al. ICLR 2023.
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Open Problem Explicit . Latent .
Heterogeneity Heterogeneity
Invariant No Environment Effective
Assumptions Labels Algorithms
RPN Invariant Invariant
Out-of-Distribution . q
A = | Learning | ™ | Learning Problem under
Generalization .
Problem Latent Heterogeneity Py
‘72’”
Rationalization of the
More Practical ExoblemiSeting
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Invariant Learning Problem under Latent Heterogeneity

Assumption (Heterogeneity Assumption)

For random variable pair (X, ®*) and ®* satisfying the Invariance Assumption, using
functional representation lemma'l, there exists random variable W* such that

X = X(®*,V*), then we assume P¢(Y|W*) can arbitrary change across environments
e € supp(€&).

Problem (Invariant Learning Problem under Latent Heterogeneity)

Given heterogeneous dataset D = {De}GESupp( Eintent) without environment labels, the

task is to generate environments Ejearn and learn invariant model under learned Ejeapp
with good OOD performance.

1LE| Gamal, A. and Kim, Y.-H. Network information theory. Network Information Theory, 12 2011.
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Empirical Algorithm 1: Heterogeneous Risk Minimization'?

® This work temporarily focuses on a simple but general setting, where
X = [@*,W*]T at the raw feature level.

® The HRM framework contains two modules, named Heterogeneity ldentification
module M. and Invariant Prediction module M.

Pooled
Data | MC —— Elearn — Mp

Boosting

A
Learned Variant Part<cm1¢rt Learned MIP —, Invafiant
¥(X) ®(X) Predictor

® The two modules can mutually promote each other, meaning that the invariant
prediction and the quality of Ejsm can both get better and better.

® We adopt feature selection to accomplish the conversion from ®(X) to W(X).

® Under our raw feature setting, we simply let #(X) = M ® X and ¥(X) = (1 — M) © X.

12 Jiashuo Liu, Zheyuan Hu, Peng Cui et al. Heterogeneous Risk Minimization. In ICML 2021.
Jiashuo Liu
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Empirical Algorithm 2: Kernelized Heterogeneous Risk Minimization(KerHRM?3)

Step 0: Initialization. Step 3: Heterogeneity Exploration.

Neural Tangent Feature Space e Ef‘)am with clustering kernel k2 :

© ® Efoun = M(OX), Vi k().

>
i_’ Mc = Uy Mp See Section 3.3

Step 3

MLP model f,(-) with initial w,

Neural Tangent Feature ®(X) = V,,f,(X)
(fixed in following),

Clustering Kernel k" (x;, x;) = ¢(x)" ()

Step 1: Invariant Prediction.
Step 2: Variant Component Decomposition.)

Learn invariant model parameters 0.5, with

Update the clustering kernel k° to k*" with e(t) © | | €9 in NTF space, and feedback to
0, in NTF space. inv Winw | | neural network f,(:) with 02, 10 getw?, .
See Section 3.2 / See Section 3.1
e Step 0:
fu(X) = fug (X) + Vwfug (X) (w — wo) (5)
= fup (X) + @(X) T (w — wo) (6)
R fuo (X) + UsvT(w — wp) @)
= fup (X) + W(X) (VT (W = wo)) = fup (X) + W(X)0 (8)

where W(X) € R is called the reduced Neural Tangent Features(Reduced NTFs),
which convert the complicated data, non-linear setting into raw feature data, linear
setting.

13 Jiashuo Liu, Zheyuan Hu, Peng Cui et al. Kernelized Heterogeneous Risk Minimization. In NeurlPS 2021
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Surprising Results
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Invariant Learning Problem under Latent Heterogeneity
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e Dy, denotes KL(P1(Y|C)||P2(Y]|C))

KL-divergence between Ejearn
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Measure the Stability

® Measure via Directional Worst-Casel*
® Sign Stability:
s = exp(— ir[}f Dk (Q]|Per))

9)

s.t.  sign(0(Q)) # sign(0(Py))

® Beyond Omni-Directional:
= exp(— inf D Py
s = exp( L LS, kL(QIIPer)) 1)
s.t.  sign(0(Q)) # sign(0(Py))
which only considers the shifts on Q(E).
® Measure via Prediction Risk!®

I-(P) := igf{DKL(QHPtr) :Eq[R] > r} (11)

14Distributionally robust and generalizable inference. Dominik Rothenh&usler, Peter Biihimann.
15Namkoong et al. Minimax Optimal Estimation of Stability Under Distribution Shift.
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Sub-population

) Iproportion € (0,1], prob. Qx y ,
Qyxy is a subpopulation dm=p st.Pyy() = aQxy + (1 — 2)Qy

Figures from Namkoong’s talk : https:/drive.google.com/file/d/1 ApBFWEkzOP39gI VMDBnXbdXXIARWXqDX/view
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Sub-population

. . Jproportion o € (0,1], prob. Qxy ,
Qxy is a subpopulation <4s==p st Pyy() = aQxy + (1 — @)Qky

Figures from Namkoong’s talk : https://drive.google.convfile/d/1 ApBFWEkzOP39gIVMDBnXbdXXIARWXgDX/view
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Distributional Stability

Automatically find worst-subpopulations and
measure the discrepancy on the distribution of V| X

subpopulation with proportion
larger than a € (0, %2)

Qxy 7 g -
a,-Distributional Stability, DS
DSay(X = Y;Py) = sup p(Q(Y1X), Py (YIX))
Qxy 7o

where p(+,) is distribution distance metric.

Jiashuo Liu Tsinghua University
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Relationship with Strict Invariance

a,-Distributional Stability, DS

DSy, (X > Y;Py) == sup p(QYIX),P,(Y|X))

Qxy #ao

where p(-,) is distribution distance metric.

p(Q1X), P(Y1X)) 1 p() = D, (QUYIX)IIP(Y1X)) or
= E[|Eq[Y1X] — Ep[Y|X]|?] p() = MMD (Q(Y1X), P(Y|X))

Strict Invariance

Sform I: for any e;, e; € form 2: for any e;, e; €
supp(€), i supp(é),
E[Y|X, e;] = E[Y|X, e;] : P(Y|X,e;) = P(Y|X, ej)

Jiashuo Liu Tsinghua University
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OOD Generalization Regret Bounds

Assume the problem is learnable w.z.¢. an expansion function s(+), and
choose p(+,-) as KL-divergence. Then for ® € Y, we have:

]EPtes [llEPtest[{(f((D))'(D] - Eptrain[f(f(q)))kb]l] = 0(\/5 (Dsag((b -V Ptrain)))

regret on the testing distributional
distribution stability

Jiashuo Liu
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