
Stability Evaluation of Large Language Models via
Distributional Perturbation Analysis

Jiashuo Liu1, Jiajin Li2, Peng Cui1, Jose Blanchet3

1Tsinghua University, 2University of British Columbia, 3Stanford University
liujiashuo77@gmail.com, jiajin.li@sauder.ubc.ca
cuip@tsinghua.edu.cn, jose.blanchet@stanford.edu

Abstract

The performance of Large Language Models (LLMs) can degrade when exposed
to shifts such as changes in language style or domain-specific knowledge that is
underrepresented in the training data. To ensure robust deployment, we propose a
stability evaluation criterion based on distributional perturbations. Conceptually,
this criterion measures the minimal perturbation required in the data to induce a
specified deterioration in model performance. We employ optimal transport (OT)
discrepancy with moment constraints on the (sample, density) space to quantify
these perturbations. This allows our stability criterion to address both data corrup-
tions and sub-population shifts, which are common in real-world LLM applications.
To make this approach practical, we provide tractable convex formulations and
computational methods tailored to different classes of loss functions used in LLMs.
Empirically, we validate the utility of our stability criterion by testing LLMs on
tasks such as jailbreak attempts and general question-answering tasks, demon-
strating its effectiveness in assessing model robustness and providing insights into
improving stability under diverse real-world scenarios.

1 Introduction

Large Language Models (LLMs) [14, 1, 6, 17] have emerged as powerful tools for a wide range of
natural language processing (NLP) tasks, from question answering [18] and summarization [7] to code
generation [10] and conversational agents [16]. Their ability to handle complex language patterns
and vast amounts of information has led to widespread adoption in both academic and industrial
applications. However, despite these advancements, LLMs still exhibit significant weaknesses when
confronted with real-world challenges, particularly when the data distribution they encounter shifts
from the training distribution [11].

Distribution shifts can take many forms, such as changes in language style [4], introduction of domain-
specific knowledge [15], or the presence of adversarial inputs [8]. For example, when an LLM trained
on general-purpose data is faced with legal or medical terminology that was underrepresented in its
training set, its performance often degrades. Similarly, shifts in linguistic patterns, such as informal
or colloquial language, can cause the model to generate inaccurate or irrelevant responses. Even
more critically, adversarial attacks, where inputs are deliberately crafted to manipulate the model into
producing incorrect or harmful outputs, expose the fragility of LLMs. This sensitivity to shifts in
input distribution can have serious implications in real-world applications, where LLMs must reliably
handle dynamic and diverse inputs across various domains.

Conventional evaluation metrics for LLMs, which typically rely on the assumption of independent
and identically distributed (i.i.d.) data, fail to capture the challenges posed by such distributional
shifts. Metrics like accuracy offer limited insights into how well an LLM can generalize under
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varying real-world conditions. In scenarios such as adversarial testing—where inputs are deliberately
manipulated to bypass content filters or exploit weaknesses in the model—or domain-specific shifts,
such as transitioning from general conversational language to highly technical medical or legal jargon,
traditional metrics like accuracy are likely to fail to capture the true robustness of a model. For
example, an LLM trained primarily on everyday text may perform well in general question-answering
tasks but could struggle when faced with precise medical diagnoses or legal contract analysis, leading
to critical errors. Similarly, in jailbreak attempts, where inputs are crafted to trick the model into
generating harmful or inappropriate content, conventional metrics like accuracy do not reflect the
model’s susceptibility to these manipulations. These kinds of real-world distribution shifts highlight
the limitations of standard evaluation approaches.

To address these limitations, we propose a stability evaluation framework that goes beyond conven-
tional metrics by quantifying an LLM’s sensitivity to distributional perturbations. Our framework
is based on the concept of minimal perturbation: the smallest change in the input data required to
induce a specified deterioration in the model’s performance. By employing optimal transport (OT)
methods, we are able to quantify both data corruptions and sub-population shifts, two of the most
prevalent types of distribution shifts in real-world settings. This approach enables us to evaluate not
only how well a model performs under i.i.d. conditions, but also how stable and resilient it remains
when faced with shifts in input data.

Our stability evaluation offers a comprehensive assessment of model robustness, taking into account
a broad range of potential distribution shifts. By adjusting the ratio of different perturbation types and
setting varying risk thresholds, our framework provides insights into the trade-offs that LLMs face
between performance on standard tasks and resilience to adversarial or shifted data. This allows for a
deeper understanding of the model’s capabilities and limitations in dynamic, real-world environments,
where data distributions are rarely static or predictable. In this paper, we present the theoretical
foundation of our stability evaluation criterion and demonstrate its practical utility through empirical
validation on tasks such as jailbreak attempts and general question answering tasks.

2 LLM Stability Evaluation Framework

Notations. Throughout this paper, we let R denote the set of real numbers, R+ denote the subset of
non-negative real numbers. We use capitalized letters for random variables, e.g., X,Y, Z, and script
letters for the sets, e.g., X ,Y,Z . For any close set Z ⊂ Rd, we define P(Z) as the family of all
Borel probability measures on Z . For P ∈ P(Z), we use the notation EP[·] to denote expectation
with respect to the probability distribution P. For the prediction problem, the random variable of
data points is denoted by Z = (X,Y ) ∈ Z , where X ∈ X and Y ∈ Y are both natural language /
text, denoting the input questions and the answer, respectively. fβ : X → Y denotes the language
model parameterized by β. The loss function is denoted as ℓ : Y × Y → {0, 1}, and ℓ(fβ(X), Y ) is
abbreviated as ℓ(β, Z). We use (·)+ = max(·, 0). We adopt the conventions of extended arithmetic,
whereby ∞ · 0 = 0 · ∞ = 0/0 = 0 and ∞−∞ = −∞+∞ = 1/0 = ∞.

2.1 OT Discrepancy for Language Data

We begin by presenting the OT discrepancy with moment constraints, as proposed in [2, Definition
2.1], based on which we develop our stability evaluation framework.

Definition 2.1 (OT discrepancy with moment constraints). If Z ⊆ Rd and W ⊆ R+ are convex and
closed sets, c : (Z×W)2 → R+ is a lower semicontinuous function, and Q,P ∈ P(Z×W), then the
OT discrepancy with moment constraints induced by c, Q and P is the functionMc : P(Z ×W)2 →
R+ defined through

Mc(Q,P) =


inf Eπ[c((Z,W ), (Ẑ, Ŵ ))]
s.t. π ∈ P((Z ×W)2)

π(Z,W ) = Q, π(Ẑ,Ŵ ) = P
Eπ[W ] = 1 π-a.s,

where π(Z,W ) and π(Ẑ,Ŵ ) are the marginal distributions of (Z,W ) and (Ẑ, Ŵ ) under π.

Remark. The core idea is to map the original sample space Z into a higher-dimensional space
Z ×W , which combines both samples and densities. In this extended space, the additional random
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variable W represents the “density” or “probability mass,” allowing it to be adjusted through optimal
transport methods. These adjustments are constrained by the requirement that the expected density
remains constant at one. Therefore, the transportation cost function c((z, w), (ẑ, ŵ)) quantifies
changes in both the sample values (ẑ → z) and their associated densities (ŵ → w).

In order to measure the discrepancy between two distribution of language data (e.g. sentences), we
design the transportation cost function c(·, ·) as:

c((z, w), (ẑ, ŵ)) = θ1·w·
(

Φ(x)TΦ(x̂)

∥Φ(x)∥∥Φ(x̂)∥︸ ︷︷ ︸
cosine similarity

·max(
#Token(x)
#Token(x̂)

,
#Token(x̂)
#Token(x)

)

)
︸ ︷︷ ︸

token number ratio︸ ︷︷ ︸
perturbation distance

+θ2·(ϕ(w)− ϕ(ŵ))+︸ ︷︷ ︸
reweighting distance

.

(1)
Here, θ1 and θ2 satisfy θ1 ≥ 0, θ2 ≥ 0, and 1/θ1 + 1/θ2 = c, where c > 0 is a constant. Generally,
θ1 and θ2 controls the relative strength of data perturbations (e.g., change the input questions to
a different style) and sub-population shifts (e.g., change the relative ratios of different topics of
questions).

Data Perturbation Distance To quantify the extent of data perturbation from a sentence x to x̂,
we introduce two key metrics: semantic similarity and editing distance. For semantic similarity, we
compute the distance in the text embedding space, using the OpenAI embedding model 1, denoted as
Φ(·) throughout this paper. To further capture the “editing” distance, we combine cosine similarity
with the token count ratio, where a larger ratio indicates a higher cost for perturbing the data. And the
token count of a sentence, represented as #Token(·), is determined by the tokenizer. These metrics
together provide a comprehensive measure of the similarity between two sentences. Furthermore,
to ensure that the semantic meaning remains unchanged from x to x̂, we utilize GPT-4 as a judge.
We input both x and x̂, asking whether they represent the same question. If GPT-4 determines they
do not, the cost function is set to infinity. Intuitively, our cost function penalizes both changes in
semantic meaning and increases in sentence length during data perturbation.

Sub-population Shift Distance To measure the strength of sub-population shifts (i.e. reweighting),
we use (ϕ(w) − ϕ(ŵ))+ to capture the differences in probability mass, where ϕ : R+ → R+

is a convex function satisfying ϕ(1) = 0. Throughout this paper, we choose ϕ(w) as ϕ(w) =
w logw − w + 1, which is associated with the Kullback–Leibler (KL) divergence.

2.2 OT-based Stability Evaluation Criterion

Unlike conventional LLM evaluation metrics that primarily focus on i.i.d. settings—such as com-
puting average scores across test samples—our stability evaluation assesses the model’s sensitivity
to potential distribution shifts. This approach provides a more accurate reflection of an LLM’s
performance in real-world applications.

To evaluate the stability of a given large language model fβ on data drawn from the distribution
P0 ∈ P(Z), we formally introduce the OT-based stability evaluation criterion as:

R(β, r) =

{
inf

Q∈P(Z×W)
Mc(Q, P̂)

s.t. EQ[W · ℓ(β, Z)] ≥ r.
(P)

Here, the reference measure P̂ is selected as P0 ⊗ δ1, with δ1 denoting the Dirac delta function,2

Mc(Q, P̂) represents the OT discrepancy with moment constraints between the projected distribution
Q and the reference distribution P̂, the transportation cost function c is chosen as Equation 1, ℓ(β, z)
denotes the prediction risk of model fβ on sample z, and r > 0 is the pre-defined risk threshold.

To sum up, we evaluate a model’s stability under distribution shifts by quantifying the minimum level
of perturbations required for the model’s performance to degrade to a predetermined risk threshold.

1https://platform.openai.com/docs/guides/embeddings
2This implies that the sample weights are almost surely equal to one with respect to the reference distribution,

as we lack any prior information about them.
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The magnitude of perturbations is determined through the use of the OT discrepancy with moment
constraints and the cost function c, see definition 2.1.

Remark (Effect of θ1 and θ2). (i) When θ1 = +∞, the stability criterion R(β, r) only counts
the sub-population shifts, as any data sample corruptions are not allowed. In this scenario, our
proposed stability criterion can be reduced to the one recently introduced in [5] and [9]. (ii) When
θ2 = +∞, the stability criterion R(β, r) only takes the data corruptions into account instead. (iii)
The most intriguing scenario arises when both θ1 and θ2 have finite values. These parameters, θ1 and
θ2, hold a pivotal role in adjusting the balance between data corruptions and sub-population shifts
within our stability criterion, which allows us to simultaneously consider both types of distribution
shifts. By manipulating the values of θ1 and θ2, we can achieve a versatile representation of a
LLM’s resilience across a wide range of distributional perturbation directions. This adaptability
carries significant implications when evaluating the robustness of LLMs in diverse and ever-evolving
real-world environments.

2.3 Dual Reformulation

Proposition 2.1 (Dual reformulations). Denote Z = (X,Y ), and suppose that W = R+. When
choosing the cost function as Equation 1 with ϕ(w) = w logw−w+1, the dual problem of Problem P
admits:

sup
h≥0

hr − θ2 logEP0

[
exp

(
ℓh,θ1(Ẑ)

θ2

)]
; (2)

where ℓh,θ1(·) is defined as

ℓh,θ1(ẑ) := max
z∈Z

h · ℓ(β, z)− θ1 ·
(

Φ(x)TΦ(x̂)

∥Φ(x)∥∥Φ(x̂)∥ ·max(
#Token(x)
#Token(x̂)

,
#Token(x̂)
#Token(x)

)

)
. (3)

Furthermore, we can derive the formulation of the most sensitive distribution of a given LLM.

Remark (Structure of the most sensitive distribution). We express Q⋆ as follows: Q⋆ =
1
n

∑n
i=1 δ(z⋆

i ,w
⋆
i )

, where each (z⋆i , w
⋆
i ) ∈ Z × R+ satisfies the conditions:

z⋆i = argmax
z∈Z

h⋆ℓ(β; z)− θ1 ·
(

Φ(x)TΦ(x̂i)

∥Φ(x)∥∥Φ(x̂i)∥
·max(

#Token(x)
#Token(x̂i)

,
#Token(x̂i)

#Token(x)
)

)
, ∀i ∈ [n].

Note that z = (x, y) denotes both the input and the desired output. And we have

w⋆
i ∝ exp

(
ℓh⋆,θ1(ẑi)

θ2

)
, ∀i ∈ [n],

where h⋆ and α⋆ are the optimal solution of problem (2.1). Therefore, it becomes evident that the
most sensitive distribution encompasses both aspects of shifts: the transformation from ẑi to z⋆i and
the reweighting from 1

n to w⋆
i . Our cost function enables a versatile evaluation of LLM stability

across a range of distributional perturbation directions. This approach yields valuable insights into
the behavior of a LLM in potential shifts and underscores the importance of incorporating both types
of distributional perturbation in stability evaluation.

2.4 Optimization

For LLMs, computing Equation (3) presents a significant challenge because gradient information
with respect to the input ẑ is not accessible through modern LLM APIs. Moreover, given our focus
on evaluating the “generalization” ability of LLMs, we aim to avoid token-level perturbations that
render the perturbed samples unnatural. Instead, our goal is to ensure that the perturbed samples
remain natural, which adds an additional layer of difficulty to our optimization problem.

Therefore, we restrict the input space X to be discrete, and then calculate the maximizer x⋆ in the
discrete space X̂ .
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Sample Perturbation Specifically, for each of the input x̂, we generate K candidates x̂1, . . . , x̂K

that satisfy: (i) they remain similar semantic meanings as original; (ii) they remain natural languages
instead of some specific symbols, and include them in the discrete space X̂ . To accomplish this,
we use the tree-of-attack framework from [8, 3]. In this approach, an assisted LLM is tasked with
rephrasing the input sentence into more challenging variations while preserving its semantic meaning.
These rephrased questions are then evaluated by an evaluator (e.g., GPT-4) to determine if they
induce a high prediction error (e.g., if the target model fβ(·) provides an incorrect answer). This
process is carried out iteratively. To empirically validate the effectiveness of this approach, we
measure the ratio of perturbed samples that successfully elicit incorrect answers for each type of
target LLM. Additionally, we calculate the average number of queries required to achieve each
successful perturbed sample. As shown in Table 1, the ratio is high and the number of average queries
is low, indicating the efficiency of our sample perturbation part.

Based on the K candidates generated above, our optimization problem becomes:

R(β, r) = sup
h≥0

hr − θ2 logEP0

[
exp

(
ℓh,θ1(Ẑ)

θ2

)]

ℓh,θ1(ẑ) := max
x∈{x̂1,...,x̂K}

h · ℓ(fβ(x), ŷ)− θ1 ·
(

Φ(x)TΦ(x̂)

∥Φ(x)∥∥Φ(x̂)∥ ·max(
#Token(x)
#Token(x̂)

,
#Token(x̂)
#Token(x)

)

)
,

which becomes a convex optimization problem and is easy to solve. Note that for the loss function
ℓ(·, ·), we adopt the methods used in [8, 3], which uses GPT-4 to evaluate the answer, leading to a
0/1-loss.

Table 1: Fraction of Adversarial Samples Achieved as per the GPT4-turbo. For each method
and target LLM, we report (1) the fraction of adversarial samples found on the Jailbreak and Alpaca
dataset, and (2) the average number of queries sent to the target LLM for each adversarial sample.
We use Vicuna-13B-V1.5 as the assisting LLM. In each column, the best results are bolded. Note
that Llama2 models are extremely hard to jailbreak, which is also found in [8, 3]. And we exclude
them for the jailbreak task.

Dataset Metric Vicu
na

-1
3B

Vicu
na

-7
B

Llam
a2

-1
3B

Llam
a2

-7
B

M
ist

ral
-7

B

Dee
pS

ee
k-

7B

Cha
tG

LM
2-

6B

Qwen
2-

7B

Jailbreak Adversarial % 84.2% 85.2% - - 85.8% 83.9% 86.4% 81.8%
# Avg. Queries 2.65 4.06 - - 2.39 3.58 2.99 3.00

Alpaca Adversarial % 80.2% 82.1% 82.3% 84.9% 73.8% 87.7% 83.7% 82.4%
# Avg. Queries 4.47 3.52 4.82 4.39 6.20 4.25 3.09 4.77

3 Experiments

In this section, we evaluate the stability of open LLMs on two tasks, including jailbreak attempts and
general QA challenges. Throughout this section, we use GPT-4 as the evaluator (for loss function
ℓ(·; ·)), Vicuna-13B-v1.5 as the assisting LLM (for generating perturbed samples). The LLMs
under evaluation include Vicuna-7B/13B-v1.5, Llama2-7B/13B, Mistral-7B-v0.2, DeepSeek-7B,
ChatGLM-6B-v2, and Qwen-7B-v2.

Jailbreak Task For the jailbreak task, we use the forbidden question set from [12], which consists
of 11 scenarios, including illegal activity, hate speech, malware generation, physical harm, economic
harm, fraud, pornography, political lobbying, privacy violations, legal advice, and government
decisions. Each scenario contains 30 forbidden questions.

General QA Task For the general QA task, we use the Alpaca [13] dataset, where we randomly
sample 1,000 questions to evaluate the stability.

Evaluation Setup In our experiments, we adjust the relative ratios θ1 and θ2 of data perturbations
and sub-population shifts, as well as the prediction risk threshold r in our stability framework, to
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compare the stability of different LLMs. Specifically, this involves two aspects: (i) for a fixed
prediction error threshold r, we vary θ1 and θ2 to assess stability under different combinations of data
corruptions and sub-population shifts; (ii) for a fixed ratio of θ1 and θ2, we vary the prediction error
threshold to evaluate stability under different levels of difficulty. The results are shown in Figure 1.
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(b) Varying r on Jailbreak
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(c) Varying θ1, θ2 on Alpaca
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(d) Varying r on Alpaca

Figure 1: Stability curve on Jailbreak dataset and Alpaca dataset. (a) and (c): we fix the error rate
r = 50% and vary the choices of θ1, θ2; (b) and (d): we fix θ1 = θ2 = 2 and vary the error rate r.

From the results, we have the following findings:

Evaluation should not rely on one single metric. Evaluating LLMs is inherently complex and
cannot be fully captured by simple metrics like accuracy or adversarial success rate. Our stability
curve demonstrates that the ranking of LLMs shifts based on different values of θ1, θ2, and the error
rate r. Furthermore, the rankings generated by our stability measure often differ from those derived
from adversarial success rates alone. For example, there are many intersections between curves in
Figure 1a-1c, indicating that under different scenarios, the stability of LLMs can change. Therefore,
our stability metric offers a more comprehensive evaluation of LLM sensitivity across a wide range
of potential distribution shifts.

The success rate of jailbreak is important, but the quality of the adversarial samples is equally
significant. When measuring the stability w.r.t. data corruptions, different from the evaluation
used in conventional jailbreak works, we need to look into the quality of the adversarial samples.
In this work, we take into consideration both the length of adversarial prompts and the semantic
similarity between adversarial prompts and the original ones. For example, the jailbreak success rate
of Vicuna-13B (84.2%) is lower than ChatGLM2-7B (86.4%), indicating that Vicuna-13B is more
stable. However, when setting the error threshold between 10% and 20%, as shown in Figure 1b, the
stability of Vicuna-13B (red curve) is lower than ChatGLM2-6B (blue curve). This phenomenon
suggests that stability should not be assessed solely based on success rate, as the quality of adversarial
samples plays an equally important role. For instance, adversarial samples may vary significantly in
terms of length or editing distance, both of which should be factored into the stability evaluation to
provide a more accurate and nuanced assessment. This further highlights the need for a comprehensive
stability metric in practical evaluations.

6



There is a tradeoff in stability between harmless and harmful questions. As shown in Figure 1c
and Figure 1d, Mistral-7B (dark red curve) performs exceptionally well on harmless question
answering with Alpaca, demonstrating strong stability compared to other 7B models. However, as
seen in Figure 1a, its stability is significantly weaker when handling harmful questions. This reveals
a tradeoff in stability between harmless question-answer tasks and harmful jailbreak tasks. A likely
explanation is Mistral-7B’s proficiency in understanding complex semantic nuances, which may
make it more susceptible to manipulation in role-playing scenarios commonly used in jailbreaks.

4 Conclusion

In this work, we propose an Optimal Transport (OT)-based stability criterion for large language
models (LLMs) that addresses both data corruptions and sub-population shifts within a unified
framework. By integrating these two forms of distributional changes, the proposed criterion offers a
comprehensive assessment of LLM stability, enabling a more robust evaluation of model performance
under realistic and diverse conditions. Future work could expand on this foundation by exploring
additional tasks across varied domains and conducting larger-scale experiments to further validate the
efficacy of the criterion. Investigating the behavior of LLMs under more extreme distribution shifts
or in low-resource settings may also provide deeper insights. Moreover, incorporating advanced
techniques for adaptive learning or domain adaptation could further enhance the model’s stability
across diverse environments.

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Jose Blanchet, Daniel Kuhn, Jiajin Li, and Bahar Taskesen. Unifying distributionally robust
optimization via optimal transport theory. arXiv preprint arXiv:2308.05414, 2023.

[3] Patrick Chao, Alexander Robey, Edgar Dobriban, Hamed Hassani, George J. Pappas, and Eric
Wong. Jailbreaking black box large language models in twenty queries. CoRR, abs/2310.08419,
2023.

[4] Ge Gao, Alexey Taymanov, Eduardo Salinas, Paul Mineiro, and Dipendra Misra. Aligning llm
agents by learning latent preference from user edits. arXiv preprint arXiv:2404.15269, 2024.

[5] Suyash Gupta and Dominik Rothenhaeusler. The s-value: evaluating stability with respect to
distributional shifts. In Advances in Neural Information Processing Systems 37, 2023.

[6] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

[7] Hanlei Jin, Yang Zhang, Dan Meng, Jun Wang, and Jinghua Tan. A comprehensive survey on
process-oriented automatic text summarization with exploration of llm-based methods. arXiv
preprint arXiv:2403.02901, 2024.

[8] Anay Mehrotra, Manolis Zampetakis, Paul Kassianik, Blaine Nelson, Hyrum Anderson, Yaron
Singer, and Amin Karbasi. Tree of attacks: Jailbreaking black-box llms automatically. CoRR,
abs/2312.02119, 2023.

[9] Hongseok Namkoong, Yuanzhe Ma, and Peter W Glynn. Minimax optimal estimation of
stability under distribution shift. arXiv preprint arXiv:2212.06338, 2022.

[10] Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoyanov, Wen-tau Yih, Sida Wang, and
Xi Victoria Lin. Lever: Learning to verify language-to-code generation with execution. In
International Conference on Machine Learning, pages 26106–26128. PMLR, 2023.

[11] Yonadav Shavit, Sandhini Agarwal, Miles Brundage, Steven Adler, Cullen O’Keefe, Rosie
Campbell, Teddy Lee, Pamela Mishkin, Tyna Eloundou, Alan Hickey, et al. Practices for
governing agentic ai systems. Research Paper, OpenAI, December, 2023.

7



[12] Xinyue Shen, Zeyuan Chen, Michael Backes, Yun Shen, and Yang Zhang. “Do Anything Now”:
Characterizing and Evaluating In-The-Wild Jailbreak Prompts on Large Language Models. In
ACM SIGSAC Conference on Computer and Communications Security (CCS). ACM, 2024.

[13] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

[14] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

[15] Laslo Welz and Carsten Lanquillon. Enhancing large language models through external domain
knowledge. In International Conference on Human-Computer Interaction, pages 135–146.
Springer, 2024.

[16] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via
multi-agent conversation framework. arXiv preprint arXiv:2308.08155, 2023.

[17] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

[18] Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. Toolqa: A dataset for llm
question answering with external tools. Advances in Neural Information Processing Systems,
36:50117–50143, 2023.

8

https://github.com/tatsu-lab/stanford_alpaca


A Proof of Proposition 2.1

Proof. Now, we are trying to calculate the surrogate function with our proposed cost function c in (1).

Denote the distance function
(

Φ(x)TΦ(x̂)
∥Φ(x)∥∥Φ(x̂)∥ ·max( #Token(x)

#Token(x̂) ,
#Token(x̂)
#Token(x) )

)
as d(·, ·). Then, we have

ℓ̃α,hc (β, (ẑ, ŵ)) = min
(z,w)∈Z×W

θ1 · w · d(z, ẑ) + θ2(ϕ(w)− ϕ(ŵ))+ − αw − h · w · ℓ(β, z)

=min
z∈Z

θ2 ·min
w∈R

−w
h · ℓ(β, z)− θ1 · d(z, ẑ) + α

θ2
+ ϕ(w) + IW(w)

=min
z∈Z

−θ2 · (ϕ+ IW)∗
(
h · ℓ(β, z)− θ1 · d(z, ẑ) + α

θ2

)
.

where the first equality follows as Ŵ = 1 almost surely and ϕ(1) = 0, and the second equality holds
due to the definition of conjugate functions.

When W = R+ and ϕ(t) = t log t− t+1, we know its conjugate function (ϕ+ IR+
)∗ = exp(t)− 1.

Consequently, we obtain the following:

ℓ̃α,hc (β, (ẑ, ŵ)) = min
z∈Z

−θ2 · exp
(
h · ℓ(β, z)− θ1 · d(z, ẑ) + α

θ2

)
+ θ2

= −θ2 · exp
(
maxz∈Z h · ℓ(β, z)− θ1 · d(z, ẑ) + α

θ2

)
+ θ2

= −θ2 · exp
(
ℓh,θ1(ẑ) + α

θ2

)
+ θ2.

where the second equality follows from the fact the function exp(·) is monotonically increasing.
Hence, we can reformulate the dual problem as

R(β, r) = sup
h∈R+,α∈R

hr + α− θ2EP0

[
exp

(
ℓh,θ1(Ẑ) + α

θ2

)]
+ θ2. (4)

Next, we will solve the supremum problem via α and the first-order condition reads

1− exp

(
α

θ2

)
EP0

[
exp

(
ℓh,θ1(Ẑ)

θ2

)]
= 0

and α⋆ = −θ2 log
(
EP0

[
ℓh,θ1

(Ẑ)

θ2

])
. Put all of them together, we get

R(β, r) = sup
h∈R+

hr − θ2 log

(
EP0

[
exp

(
ℓh,θ1(Ẑ)

θ2

)])
.
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