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Abstract

The performance of learning models often deteriorates when deployed in out-of-sample environments.
To ensure reliable deployment, we propose a stability evaluation criterion based on distributional
perturbations. Conceptually, our stability evaluation criterion is defined as the minimal perturbation
required on our observed dataset to induce a prescribed deterioration in risk evaluation. In this paper,
we utilize the optimal transport (OT) discrepancy with moment constraints on the (sample, density)
space to quantify this perturbation. Therefore, our stability evaluation criterion can address both data
corruptions and sub-population shifts — the two most common types of distribution shifts in real-world
scenarios. To further realize practical benefits, we present a series of tractable convex formulations and
computational methods tailored to different classes of loss functions. The key technical tool to achieve this
is the strong duality theorem provided in this paper. Empirically, we validate the practical utility of our
stability evaluation criterion across a host of real-world applications. These empirical studies showcase
the criterion’s ability not only to compare the stability of different learning models and features but also to
provide valuable guidelines and strategies to further improve models.

Keywords: Model Evaluation, Distributional Perturbation, Optimal Transport

1 Introduction

The issue of poor out-of-sample performance frequently arises, particularly in high-stakes applications
such as healthcare (Bandi et al., 2018; Wynants et al., 2020; Roberts et al., 2021), economics (Hand,
2006; Ding et al., 2021), self-driving (Malinin et al., 2021; Hell et al., 2021). This phenomenon can be
attributed to discrepancies between the training and test datasets, influenced by various factors. Some of these
factors include measurement errors during data collection (Jacobucci and Grimm, 2020; Elmes et al., 2020),
deployment in dynamic, non-stationary environments (Camacho and Conover, 2011; Conger et al., 2023),
and the under-representativeness of marginalized groups in the training data (Corbett-Davies et al., 2023),
among others. The divergence between training and test data presents substantial challenges to the reliability,
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robustness, and fairness of machine learning models in practical settings. Recent empirical studies have
shown that algorithms intentionally developed for addressing distribution shifts—such as distributionally
robust optimization (Blanchet et al., 2019; Sagawa et al., 2019; Kuhn et al., 2019; Duchi and Namkoong,
2021; Rahimian and Mehrotra, 2022; Blanchet et al., 2024), domain generalization (Zhou et al., 2022), and
causally invariant learning (Arjovsky et al., 2019; Krueger et al., 2021) — experience a notable performance
degradation when faced with real-world scenarios (Gulrajani and Lopez-Paz, 2020; Frogner et al., 2021; Yang
et al., 2023; Liu et al., 2023).

Instead of providing a robust training algorithm, we shift focus towards a more fundamental (in some
sense even simpler) question:

Q: How do we evaluate the stability of a learning model when subjected to data perturbations?

To answer this question, our initial step is to gain a comprehensive understanding of various types of
data perturbations. In this paper, we categorize data perturbations into two classes: (i) Data corruptions,
which encompass changes in the distribution support (i.e., observed data samples). These changes can be
attributed to measurement errors in data collection or malicious adversaries. Typical examples include
factors like street noises in speech recognition (Kinoshita et al., 2020), rounding errors in finance (Li and
Mykland, 2015), adversarial examples in vision (Goodfellow et al., 2020) and, the Goodhart’s law empirically
observed in government assistance allocation (Camacho and Conover, 2011). (ii) Sub-population shifts, refer
to perturbation on the probability density or mass function while keeping the same support. For example,
model performances substantially degrade under demographic shifts in recommender systems (Blodgett et al.,
2016; Sapiezynski et al., 2017); under temporal shifts in medical diagnosis (Pasterkamp et al., 2017); and
under spatial shifts in wildlife conservation (Beery et al., 2021).

Recent investigation on the question Q predominantly centers around sub-population shifts, see (Li et al.,
2021; Namkoong et al., 2022; Gupta and Rothenhaeusler, 2023). However, in practical scenarios, it is common
to encounter both types of data perturbation. Studies such as Gokhale et al. (2022) and Zou and Liu (2023)
have documented that models demonstrating robustness against sub-population shifts can still be vulnerable
to data corruptions. This underscores the importance of adopting a more holistic approach when evaluating
model stability, one that addresses both sub-population shifts and data corruptions.

To fully answer the question Q, we frame the model stability as a projection problem over probability
space under the OT discrepancy with moment constraints. Specifically, we seek the minimum perturbation
necessary on our reference measure (i.e., observed data) to guarantee that the model’s risk remains below a
specified threshold. The crux of our approach is to conduct this projection within the joint (sample, density)
space. Consequently, our stability metric is capable of addressing both data corruptions on the sample space
and sub-population shifts on the density or probability mass space. To enhance the practical utility of our
approach, we present a host of tractable convex formulations and computational methods tailored to different
learning models. The key technical tool for this is the strong duality theorem provided in this paper.

To offer clearer insights, we visualize the most sensitive distribution in stylized examples. Our approach
achieves a balanced and reasoned stance by avoiding overemphasis on specific samples or employing overly
aggressive data corruptions. Moreover, we demonstrate the practical effectiveness of our proposed stability
evaluation criterion by applying it to tasks related to income prediction, health insurance prediction, and
COVID-19 mortality prediction. These real-world scenarios showcase the framework’s capacity to assess
stability across various models and features, uncover potential biases and fairness issues, and ultimately
enhance decision-making.

Notations. Throughout this paper, we let R denote the set of real numbers, R+ denote the subset of
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Figure 1: Data Distribution Projection

non-negative real numbers. We use capitalized letters for random variables, e.g., X,Y, Z, and script letters
for the sets, e.g., X ,Y,Z . For any close set Z ⊂ Rd, we define P(Z) as the family of all Borel probability
measures on Z . For P ∈ P(Z), we use the notation EP[·] to denote expectation with respect to the
probability distribution P. For the prediction problem, the random variable of data points is denoted by
Z = (X,Y ) ∈ Z , where X ∈ X denotes the input covariates, Y ∈ Y denotes the target. fβ : X → Y
denotes the prediction model parameterized by β. The loss function is denoted as ℓ : Y × Y → R+, and
ℓ(fβ(X), Y ) is abbreviated as ℓ(β, Z). We use (·)+ = max(·, 0). We adopt the conventions of extended
arithmetic, whereby∞ · 0 = 0 · ∞ = 0/0 = 0 and∞−∞ = −∞+∞ = 1/0 =∞.

2 Model Evaluation Framework

In this section, we present a stability evaluation criterion based on OT discrepancy with moment constraints,
capable of considering both types of data perturbation — data corruptions and sub-population shifts — in
a unified manner. The key insight lies in computing the projection distance, as shown in Figure 1, which
involves minimizing the probability discrepancy between the most sensitive distribution denoted as Q⋆ and the
lifted training distribution P0 ⊗ δ1 in the joint (sample, density) space, while maintaining the constraint that
the model performance falls below a specific threshold. This threshold refer to a specific level of risk, error
rate, or any other relevant performance metrics. The projection type methodology has indeed been employed
in the literature for statistical inference, particularly in tasks like constructing confidence regions (Owen,
2001; Blanchet et al., 2019). However, this application is distinct from our current purpose.

2.1 OT-based stability evaluation criterion

We begin by presenting the OT discrepancy with moment constraints, as proposed in Blanchet et al. (2023,
Definition 2.1). This serves as a main technical tool for our further discussions.
Definition 2.1 (OT discrepancy with moment constraints). IfZ ⊆ Rd andW ⊆ R+ are convex and closed sets,
c : (Z ×W)2 → R+ is a lower semicontinuous function, and Q,P ∈ P(Z ×W), then the OT discrepancy
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with moment constraints induced by c, Q and P is the functionMc : P(Z ×W)2 → R+ defined through

Mc(Q,P) =



inf Eπ[c((Z,W ), (Ẑ, Ŵ ))]

s. t. π ∈ P((Z ×W)2)

π(Z,W ) = Q, π(Ẑ,Ŵ ) = P

Eπ[W ] = 1 π-a.s,

where π(Z,W ) and π(Ẑ,Ŵ ) are the marginal distributions of (Z,W ) and (Ẑ, Ŵ ) under π. □

Remark 2.1. The core idea is to lift the original sample space Z to a higher dimensional space Z ×W
—- a joint (sample, density) space. Here, we treat the additional random variable W as the “density ” or
“probability mass”, making it also amenable to perturbations through optimal transport methods. However,
these perturbations are subject to the constraint that the expectation of the density must remain equal to one.
Thus, the transportation cost function c((z, w), (ẑ, ŵ)) can measure the changes in both samples (ẑ → z) and
their probability densities (ŵ → w). □

To evaluate the stability of a given learning model fβ trained on the distribution P0 ∈ P(Z), we formally
introduce the OT-based stability evaluation criterion as

R(β, r) =


inf

Q∈P(Z×W)
Mc(Q, P̂)

s.t. EQ[W · ℓ(β, Z)] ≥ r.

(P)

Here, the reference measure P̂ is selected as P0 ⊗ δ1, with δ1 denoting the Dirac delta function,1 Mc(Q, P̂)
represents the OT discrepancy with moment constraints between the projected distribution Q and the reference
distribution P̂, ℓ(β, z) denotes the prediction risk of model fβ on sample z, and r > 0 is the pre-defined risk
threshold.

To sum up, we evaluate a model’s stability under distribution shifts by quantifying the minimum level
of perturbations required for the model’s performance to degrade to a predetermined risk threshold. The
magnitude of perturbations is determined through the use of the OT discrepancy with moment constraints and
the cost function c, see definition 2.1.

Then, a natural question arises: How do we select the cost function c to effectively quantify the various
types of perturbations? We aim for this cost function to be capable of quantifying changes in both the support
of the distribution and the probability density or mass function. One possible candidate cost function is

c((z, w), (ẑ, ŵ)) = θ1 · w · d(z, ẑ) + θ2 · (ϕ(w)− ϕ(ŵ))+. (2.1)

Here, d(z, ẑ) = ∥x− x̂∥22 +∞ · |y − ŷ| quantifies the cost associated with the different data samples z and ẑ
in the set Z , with the label measurement’s reliability considered infinite; (ϕ(w)− ϕ(ŵ))+ denotes the cost
related to differences in probability mass, where ϕ : R+ → R+ is a convex function satisfying ϕ(1) = 0;
θ1, θ2 ≥ 0 serve as two hyperparameters, satisfying 1/θ1 + 1/θ2 = C for some constant C, to control the
trade-off between the cost of perturbing the distribution’s support and the probability density or mass on the
observed data points. This cost function was originally proposed in Blanchet et al. (2023, Section 5) within
the framework of distributionally robust optimization.

1This implies that the sample weights are almost surely equal to one with respect to the reference distribution, as we lack any prior
information about them.
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Remark 2.2 (Effect of θ1 and θ2). (i) When θ1 = +∞, the stability criterion R(β, r) only counts the
sub-population shifts, as any data sample corruptions are not allowed. In this scenario, our proposed stability
criterion can be reduced to the one recently introduced in Gupta and Rothenhaeusler (2023) and Namkoong
et al. (2022). (ii) When θ2 = +∞, the stability criterion R(β, r) only takes the data corruptions into account
instead. (iii) The most intriguing scenario arises when both θ1 and θ2 have finite values. These parameters,
θ1 and θ2, hold a pivotal role in adjusting the balance between data corruptions and sub-population shifts
within our stability criterion, which allows us to simultaneously consider both types of distribution shifts. By
manipulating the values of θ1 and θ2, we can achieve a versatile representation of a model’s resilience across
a wide range of distributional perturbation directions. This adaptability carries significant implications when
evaluating the robustness of models in diverse and ever-evolving real-world environments. □

2.2 Dual reformulation and its interpretation

Problem (P) constitutes an infinite-dimensional optimization problem over probability distributions and thus
appears to be intractable. However, we will now demonstrate that by first establishing a strong duality result,
problem (P) can be reformulated as a finite-dimensional optimization problems and discuss the structure of
the most sensitive distribution from problem (P).
Theorem 2.1 (Strong duality for problem (P)). Suppose that (i) The set Z ×W is compact, (ii) ℓ(β, ·) is
upper semi-continuous for all β, (iii) the cost function c : (Z ×W)2 → R+ is continuous; and (iv) the risk
level r is less than the worst case value r̄ := maxz∈Z ℓ(β, z). Then we have,

R(β, r) = sup
h∈R+,α∈R

hr + α+ EP̂

[
ℓ̃α,hc (β, (Ẑ, Ŵ ))

]
(D)

where the surrogate function ℓ̃α,hc (β, (ẑ, ŵ)) equals to

min
(z,w)∈Z×W

c((z, w), (ẑ, ŵ)) + αw − h · w · ℓ(β, z),

for all ẑ ∈ Z and ŵ ∈ W . □

For a detailed proof, we direct interested readers to the Appendix A.1.
Remark 2.3. When the reference measure P0 is a discrete measure, some technical conditions in Theorem 2.1
(e.g., compactness, (semi)-continuity) can be eliminated by utilizing the abstract semi-infinite duality theory
for conic linear programs. Please refer to Shapiro (2001, Proposition 3.4) and our proof in Appendix A.1 for
more detailed information. □

If we adopt the cost function in the form of (2.1) for two commonly used ϕ functions, we can simplify
the surrogate function further by obtaining the closed form of w. Here, we explore the following cases:
(i) Selecting ϕ(t) = t log t − t + 1, which is associated with the Kullback–Leibler (KL) divergence. (ii)
Choosing ϕ(t) = (t− 1)2, which is linked to the χ2-divergence.
Proposition 2.1 (Dual reformulations). Suppose thatW = R+. (i) If ϕ(t) = t log t− t+ 1, then the dual
problem (D) admits:

sup
h≥0

hr − θ2 logEP0

[
exp

(
ℓh,θ1(Ẑ)

θ2

)]
; (2.2)

(ii) If ϕ(t) = (t− 1)2, then the dual problem (D) admits:

sup
h≥0,α∈R

hr + α+ θ2 − θ2EP0

(ℓh,θ1(Ẑ) + α

2θ2
+ 1

)2

+

 , (2.3)
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where the d-transform of h · ℓ(β, ·) with the step size θ1 is defined as

ℓh,θ1(ẑ) := max
z∈Z

h · ℓ(β, z)− θ1 · d(z, ẑ).

□

When the reference measure P0 is represented as the empirical measure P0 =
1
n

∑n
i=1 δẑi , the characteri-

zation of the most sensitive distribution Q⋆, can be elucidated through the dual formulation provided in (2.2)
and (2.3).
Remark 2.4 (Structure of the most sensitive distribution). We express Q⋆ as follows: Q⋆ = 1

n

∑n
i=1 δ(z⋆i ,w⋆

i )
,

where each (z⋆i , w
⋆
i ) ∈ Z × R+ satisfies the conditions:

z⋆i = argmax
z∈Z

h⋆ℓ(β; z)− θ1 · d(z, ẑi), ∀i ∈ [n].

Using various ϕ functions requires adjusting the weight in a distinct manner:
(i) If ϕ(t) = log t− t+ 1, then we have:

w⋆
i ∝ exp

(
ℓh⋆,θ1(ẑi)

θ2

)
, ∀i ∈ [n];

(ii) If ϕ(t) = (t− 1)2, then we have:

w⋆
i ∝

(
ℓh⋆,θ1(ẑi)− α∗

2θ2
+ 1

)
+

, ∀i ∈ [n],

where h⋆ and α⋆ are the optimal solution of problem (D). Therefore, it becomes evident that the most sensitive
distribution encompasses both aspects of shifts: the transformation from ẑi to z⋆i and the reweighting from 1

n
to w⋆

i . Our cost function enables a versatile evaluation of model stability across a range of distributional
perturbation directions. This approach yields valuable insights into the behavior of a model in different
real-world scenarios and underscores the importance of incorporating both types of distributional perturbation
in stability evaluation. □

2.3 Computation

In this subsection, our emphasis lies in addressing problems (2.2) and (2.3) with varying types of loss
functions, specifically when the reference measure P0 takes the form of the empirical distribution.

Convex piecewise linear loss functions. If the loss function ℓ(β, ·) is piecewise linear (e.g., linear SVM),
we can show that (2.2) admits a tractable finite convex program.
Theorem 2.2 (KL divergence). Suppose that Z = Rd × {+1,−1} and ℓ({(ak, bk)}k∈[K], z) = maxk∈[K] y ·
a⊤k x+ bk. The negative optimal value of problem (2.2) is equivalent to the optimal value of the finite convex
program:

min −hr + t

s. t. λ ∈ R+, t ∈ R, η ∈ Rn
+, p ∈ Rn

(ηi, θ2, pi − t) ∈ Kexp ∀i ∈ [n]

∥ak∥22
4θ1

h2 + ŷi · aTk x̂i · h+ bk ≤ pi, ∀k ∈ [K],∀i ∈ [n]

1
n

∑n
i=1 ηi ≤ θ2,
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where the set Kexp is the exponential cone defined as

Kexp =
{
(x1, x2, x3) ∈ R3 : x1 ≥ x2 · exp

(
x3
x2

)
, x2 > 0

}
∪ {(x1, 0, x3) ∈ R3 : x1 ≥ 0, x3 ≤ 0}.

□

Theorem 2.3 (χ2 Divergnce). Suppose that Z = Rd × {+1,−1} and ℓ({(ak, bk)}k∈[K], z) = maxk∈[K] y ·
a⊤k x+ bk. The negative optimal value of problem (2.2) is equivalent to the optimal value of the finite convex
program

min −hr + t

s. t. h ∈ R+, α ∈ R, t ∈ R, η ∈ Rn
+

∥ak∥22
4θ1
· h2 + ŷi · aTk x̂i · h+ bk + 2θ2α+ 2θ2 ≤ 2θ2ηi ∀k ∈ [K], ∀i ∈ [n]

θ2
n

∑n
i=1 η

2
i ≤ t.

□

For a detailed proof, we direct interested readers to the Appendix A.3 and A.4 for more detailed information.
Equipped with Theorem 2.2 and 2.3, we can calculate our evaluation criterion by general purpose conic
optimization solvers such as MOSEK and GUROBI.

0/1 loss function. In practical applications, employing a 0/1 loss function offers users a simpler method to
set up the risk level r, which corresponds to a pre-defined acceptable level of error rate. That is, given a
trained model β, we define the loss function on the sample (x, y) as

ℓ(β, (x, y)) = Iy ̸=fβ(x),

where I is the indicator function defined as Iy ̸=fβ(x) = 0 if y ̸= fβ(x); = 0 otherwise. In this scenario,
the d-transform of h · ℓβ(·) can be expressed in a closed form. Conceptually, this loss function promotes
long-haul transportation, as it encourages either minimal perturbation or no movement at all, i.e.,

ℓh,θ1(ẑ) = (h− θ1 · d⋆(ẑ))+,

where d⋆(ẑ) := minz∈Z{d(z, ẑ) : ℓ(β, z) = 1}. This distance quantifies the minimal adjustment needed to
fool or mislead the classifier’s prediction for the sample ẑ. A similar formulation has been employed in Si
et al. (2021) to assess group fairness through optimal transport projections. Finally, the dual formulation (2.2)
is reduced to an one-dimensional convex problem w.r.t h.

Nonlinear loss functions. For general nonlinear loss functions, such as those encountered in deep neural
networks, the dual formulation (2.2) retains its one-dimensional convex nature with respect to h. However,
the primary computational challenge lies in solving the inner maximization problem concerning the sample
z. In essence, this dual maximization problem (2.2) for nonlinear loss functions is closely associated with
adversarial training (Nouiehed et al., 2019; Yi et al., 2021). All algorithms available in the literature for
this purpose can be applied to our problem as well. The key distinction lies in the outer loop. In our case,
we optimize over h ∈ R+ to perturb the sample weights, whereas in adversarial training, this outer loop is
devoted to the training of model parameters.
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Figure 2: Visualizations of the original dataset and the most sensitive distribution Q⋆ produced by cross-entropy
loss function under different θ1, θ2. The original prediction error is 0.1, and the risk threshold is 0.5.

For simplicity, we adopt a widely-used approach in our paper: Performing multiple gradient ascent steps
to generate adversarial examples, followed by an additional gradient ascent step over h. For a more thorough
understanding, please see Algorithm 1. If we can solve the inner maximization problem nearly optimally,
then we can ensure that the sequence generated by Algorithm 1 converges to the global optimal solution. You
can find further details in Sinha et al. (2018, Theorem 2).

2.4 Feature stability analysis

As an additional benefit, if we select an alternative cost function, different from the one proposed in (2.1), our
evaluation criterion R(β, r) can serve as an effective metric for assessing feature stability within machine
learning models. If we want to evaluate the stability of the i-th feature, we can modify the distance function d
in (2.1) as

d(z, ẑ) = ∥z(i) − ẑ(i)∥22 +∞ · ∥z(,−i) − ẑ(,−i)∥22,
where z(i) represents the i-th feature of z, while z(,−i) = z\z(i) denotes all variables in z except for the i-th
one. This implies that during evaluation, we are only permitted to perturb the i-th feature while keeping all
other features unchanged.

Substituting d(z, ẑ) in problem (2.2), we could obtain the corresponding feature stability criterion
Ri(β, r), which provides a quantitative stability evaluation of how robust the model is with respect to changes
in the i-th feature. Specifically, a higher value of Ri(β, r) indicates greater stability of the corresponding
feature against potential shifts.

3 Visualizations on stylized / toy examples

In this section, we use a toy example to visualize the most sensitive distribution Q⋆ based on Remark 2.4,
which provides intuitive insights into the structure of Q⋆.

We consider a two-dimensional binary classification problem. We generate 100 samples for Y = 0 from
distributionN ([2, 2]T , I2), and 100 samples for Y = 1 from distributionN ([−1,−1]T , I2). The model fβ(·)
under evaluation is logistic regression (LR). In this section, we choose ϕ(t) = t log t − t + 1. To explore
the effects of varying the adjustment parameters, we fix 1/θ1 + 1/θ2 = 5. We use the cross-entropy loss
function, set the risk threshold to be 0.5 (the original loss was 0.1), and solve the problem (2.2). In Figure
2b-2d, we visualize the most sensitive distribution Q⋆ in each setting, where the decision boundary of fβ(·) is
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Figure 3: Visualizations of the original dataset and the most sensitive distribution Q⋆ with 0/1 loss function
under different θ1, θ2. The original prediction error rate is 1%, and the error rate threshold r is set to 30%.

indicated by the boundary line, colored points represent the perturbed samples, shadow points represent the
original samples, and the size of each point is proportional to its sample weight in Q⋆. Corresponding with
the analysis in Section 2.1, we have the following observations:

(i) When θ1 = +∞, our stability criterion only considers sub-population shifts. From Figure 2b, we
notice a significant increase in weight assigned to a limited number of samples near the boundary. This
aligns with the works of Namkoong et al. (2022); Gupta and Rothenhaeusler (2023), which emphasize
tail performance analysis.

(ii) When θ2 = +∞, the stability criterion only considers data corruptions. From Figure 2c, a significant
number of samples are severely perturbed to adhere to the predefined risk threshold.

(iii) When θ1 = θ2 = 0.4, in Figure 2d, a more balanced Q⋆ is observed, reflecting the incorporation of both
data corruptions and sub-population shifts. This showcases a scenario where samples undergo moderate
and reasonable perturbations, and the sensitive distribution is not disproportionately concentrated on a
limited number of samples. Such a distribution is a more holistic and reasonable approach to evaluating
stability in practice, taking into account a broader range of potential shifts.

Furthermore, we showcase the most sensitive distributions with 0/1 loss. We set the error rate threshold r
to be 30%. The results are shown in Figure 3. From the results, we have the following observations:

(i) Similar to the phenomenon above, when θ2 = +∞, the stability criterion only considers data
corruptions; and when θ1 = +∞, it only considers sub-population shifts.

(ii) Different from Figure 2, since we use 0/1 loss here, the perturbed samples are all near the boundary.

For fixed θ1 and θ2, we vary the error rate threshold r and visualize the most sensitive distribution Q⋆ in
Figure 4. We set θ1 = 1.0 and θ2 = 0.25, and our stability criterion will consider both data corruptions and
sub-population shifts.

Finally, in Figure 5, we plot the curve of EQ(t) [W · ℓ(β, Z)] with respect to the epoch number t. From the
results, it’s evident that the infeasibility error of the sequence generated by our algorithm tends towards zero.
This implies that the final expectation over the most sensitive distribution Q(T ) will match the predefined
threshold r.
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Figure 4: Visualizations of the most sensitive distribution Q⋆ with 0/1 loss function under different error rate
threshold. We set θ1 = 1.0 and θ2 = 0.25 here.
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(a) General nonlinear loss function.
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Figure 5: The convergence of EQ(t) [W ·ℓ(β, Z)] w.r.t. epoch t. (a): Use general nonlinear loss function (cross-
entropy loss) with r = 0.5. (b): Use 0/1 loss function with r = 30%. Here ϕKL denotes ϕ(t) = t log t− t+1,
and ϕχ2 denotes ϕ(t) = (t− 1)2.

4 Experiments

In this section, we explore real-world applications to show the practical effectiveness of our stability evaluation
criterion, including how this criterion can be utilized to compare the stability of both models and features,
and to inform strategies for further enhancements.

Datasets. We use three real-world datasets, including ACS Income dataset, ACS Public Coverage dataset,
and COVID-19 dataset.

• ACS Income dataset. The dataset is based on the American Community Survey (ACS) Public Use
Microdata Sample (PUMS) (Ding et al., 2021). The task is to predict whether an individual’s income
is above $50,000. We filter the dataset to only include individuals above the age of 16, usual working
hours of at least 1 hour per week in the past year, and an income of at least $100. The dataset contains
individuals from all American states, and we focus on California (CA) in our experiments. We follow the
data pre-processing procedures in Liu et al. (2021). The dataset comprises a total of 76 features, with
the majority of categorical features being one-hot encoded to facilitate analysis. In our experiments, we
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sample 2,000 data points from CA for model training, and another 2,000 for evaluation. When involving
algorithmic interventions in Section 4.2, we further sample 5,000 points to compare the performances of
different algorithms.

• ACS Public Coverage dataset. The dataset is also based on ACS PUMS (Ding et al., 2021). The task is to
predict whether an individual has public health insurance. We focus on low-income individuals who are not
eligible for Medicare by filtering the dataset to only include individuals under the age of 65 and with an
income of less than $30,000. Similar to the ACS Income dataset, we focus on individuals from CA in our
experiments. We follow the data pre-processing procedures in Liu et al. (2021). The dataset comprises a
total of 42 features, with the majority of categorical features being one-hot encoded to facilitate analysis. In
our experiments, we sample 2,000 data points from CA for model training, and another 2,000 for evaluation.
When involving algorithmic interventions in Section 4.2, we further sample 5,000 points to compare the
performances of different algorithms.

• COVID-19 dataset. The COVID-19 dataset contains COVID patients from Brazil, which is based on
SIVEP-Gripe data (Baqui et al., 2020). It has 6882 patients from Brazil recorded between Februrary
27-May 4, 2020. There are 29 features in total, including comorbidities, symptoms, and demographic
characteristics. The task is to predict the mortality of a patient, which is a binary classification problem. In
our experiments, we split the dataset with a ratio of 1:1 for training and evaluation sets.

Throughout the experiments, we set 1/θ1 + 1/θ2 = 5 for adjustment parameters θ1 and θ2.

Algorithms under evaluation Before presenting experimental results, we will initially introduce the
formulations of various algorithms used to evaluate the effectiveness of their interventions. In Section 4.1, we
evaluate Adversarial Training (AT) Sinha et al. (2018) and Tilted ERM (Li et al., 2023). In Section 4.2, we
introduce the Targeted AT. Here are their mathematical formulations:

(i) AT:

min
β

{
EP0 [ϕγ(β, Z)] := EP0

[
sup
z∈Z

ℓ(β, Z)− γc(Z, Ẑ)

]}
, (4.1)

where c(z, ẑ) = ∥x− x̂∥22 +∞ · |y − ŷ|, and γ is the penalty hyper-parameter.

(ii) Tilted ERM:

min
β

t log

(
EP0

[
exp

(
ℓ(β, Z)

t

)])
, (4.2)

where t is the temperature hyper-parameter.

(iii) Targeted AT:

min
β

{
EP0 [ϕγ(β, Z)] = EP0

[
sup
z∈Z

ℓ(β, Z)− γc(Z, Ẑ)

]}
. (4.3)

In this case, c(z, ẑ) = ∥z(i)− ẑ(i)∥22 +∞· ∥z(,−i)− ẑ(,−i)∥22, where z(i) denotes the target feature of z,
z(,−i) denotes all the other features and γ is the penalty hyper-parameter. By choosing this c(z, ẑ), the
targeted AT will only perturb the target feature while keeping the others unchanged.

Training Details. In our experiments, we use LR for linear model and a two-layer MLP for neural network.
We use PyTorch Library (Paszke et al., 2019) throughout our experiments. The number of hidden units
of MLP is set to 16. As for the models under evaluation in Section 4, (i) for AT, we vary the penalty
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parameter γ ∈ {0.1, 0.2, . . . , 1.0} and select the best γ according to the validation accuracy. The inner
number of inner optimization iterates is set to 20; (ii) for Tilted ERM, we vary the temperature parameter
t ∈ {0.1, 0.2, . . . , 1.0} and select the best t according to the validation accuracy. Throughout all experiments,
the ADAM optimizer with a learning rate of 1e−3 is used. All experiments are performed using a single
NVIDIA GeForce RTX 3090.

4.1 Model stability analysis

In this section, we first provide more in-depth empirical analyses of our proposed criterion, and demonstrate
how it can reflect a model’s stability with respect to data corruptions and sub-population shifts. We focus on
the income prediction task for individuals from CA, using the ACS Income dataset.

Excess risk decomposition. Recall that our stability evaluation misleads the model to a pre-defined risk
threshold by perturbing the original distribution P0 in two ways, i.e. data corruptions and sub-population
shifts. Based on the optimal solutions Q⋆ ∈ P(Z ×W) of problem (P), we can compute the excess risk
∆ = EQ⋆ [W · ℓ(β, Z)]− EP0 [ℓ(β, Z)] into two parts satisfying ∆ = ∆I +∆II:

∆I := EQ⋆
Z
[ℓ(β, Z)]− EP0 [ℓ(β, Z)],

∆II := EQ⋆ [W · ℓ(β, Z)]− EQ⋆
Z
[ℓ(β, Z)],

(4.4)

where Q⋆
Z is the marginal distribution of Q⋆ w.r.t Z. Thus, from this decomposition, we can see that ∆I

denotes the excess risk induced by data corruptions (data samples ẑ → z), and ∆II denotes that induced
by sub-population shifts (probability density 1 → w). In this experiment, for a MLP model trained with
empirical risk minimization (ERM), we use the cross-entropy loss and set the risk threshold to be 3.0. In
Figure 6a, we vary the θ1 and θ2 and plot the ∆I,∆II in each setting. The results align with our theoretical
understanding that a decrease in θ1 leads our evaluation method to place greater emphasis on data corruptions.
Conversely, a reduction in θ2 shifts the focus of our evaluation towards sub-population shifts. This observation
confirms the adaptability of our approach in weighing different types of distribution shifts based on the values
of θ1 and θ2.
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(a) Excess risk decomposition.
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(c) Stability measure.

Figure 6: Results of the income prediction task. (a): The excess risk decomposition under different values
of θ1 and θ2 according to (4.4). (b): The curve of the risk on the most sensitive distribution Q⋆ during
optimization for different choices of θ1 and θ2, which converge to the pre-defined risk threshold. The models
under evaluation in (a) and (b) are both ERM (MLP). (c): The stability measure for MLP models trained with
ERM, AT, and Tilted ERM, under varying θ1 and θ2. Error bars denote the standard deviations over multiple
runs.
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Convergence of our optimization algorithm. In Figure 6b, we plot the curve of the risk on Q(t) w.r.t. the
epoch number t throughout the optimization process. For different values of θ1 and θ2, we observe that the risk
consistently converges to the pre-defined risk threshold of r = 3.0. This empirical observation is in agreement
with our theoretical investigation, demonstrating the reliability and effectiveness of our optimization approach.

Reflection of stability. We then proceed to compare the stability of MLP models trained with three
well-established methods, including ERM, AT, and Tilted ERM. AT is specifically designed to enhance the
model’s resilience to data corruptions, whereas Tilted ERM, through its use of the log-sum-exp loss function,
aims to prioritize samples with elevated risks, potentially enhancing stability in the presence of sub-population
shifts. For our analysis, we set the risk threshold r to 3.0, vary θ1 and θ2, and plot the resulting stability
measure R(β, 3.0) for each method.

From Figure 6c, we have the following observations: (i) Both robust learning methods exhibit markedly
higher stability compared to ERM; (ii) AT exhibits greater stability in the context of data corruptions, while
Tilted ERM shows superior performance in scenarios involving sub-population shifts. These findings align
with our initial hypotheses regarding the strengths of these methods; (iii) Furthermore, the results suggest that
robust learning methods tailored to specific types of distribution shifts may face challenges in generalizing to
other contexts. Therefore, accurately identifying the types of shifts to which a model is most sensitive is
crucial in practice, as it can inform machine learning engineers on strategies to further refine and improve the
model’s robustness and efficacy. This insight underscores the significance of our proposed stability evaluation
framework. It offers a comprehensive and unified perspective on a model’s stability across various types
of distribution shifts, enabling a more holistic understanding and strategic approach to enhancing model
robustness and reliability.

Furthermore, the results of models’ stability on the ACS PubCov dataset and the COVID-19 dataset are
shown in Figure 7. We can observe similar phenomenon as the ACS Income dataset:
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(a) PubCov dataset.
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Figure 7: The stability measure for MLP models trained with ERM, AT, and Tilted ERM on ACS PubCov
dataset and COVID-19 dataset.

(i) When θ1 is small, our stability measure pays more attention to data corruptions. Therefore, AT performs
better than Tilted ERM and ERM.

(ii) When θ2 is small, the main focus shifts to population shifts, where Tilted ERM is more preferred.

Besides, it is noteworthy that the standard deviation of the stability measure estimation increases as θ1
approaches infinitely (we set it to 100 in our experiments). When fixing the evaluation data, the standard
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deviations—indicating the randomness inherent to our computational algorithm—are relatively small. This
observation points to the randomness of sampling as the primary factor. Furthermore, the introduction of
θ1 = +∞ brings a statistical cost in calculating the stability measure, as demonstrated in Namkoong et al.
(2022).

4.2 Feature stability analysis

Building upon our previous findings, we further investigate the applicability of feature stability analysis
across multiple prediction tasks, including income, insurance, and COVID-19 mortality prediction. By
examining feature stability, we gain valuable insights into the specific attributes that significantly influence
model performance. It provides a principle approach to enhance our understanding of the risky factors
contributing to overall model instability, and thereby helps to discover potential discriminations and improve
model robustness and fairness. Throughout all the experiments, we use 0/1 loss function and set the error rate
threshold r to be 40%. The adjustment parameter θ1 is set to 1.0, and θ2 is 0.25.

Income prediction

We sample 2,000 data points from ACS Income dataset for training, an additional 2,000 points for the
evaluation set, and a further 5,000 points to test the effectiveness of algorithmic interventions. For both
the LR model and the MLP model, trained using ERM, we use the evaluation set to compute the feature
sensitivity measure Ri(β, r) for each feature as outlined in Section 2.4. The top-5 most sensitive features for
each model – MLP and LR – are displayed in Figure 8a. In these visualizations, distinct colors are assigned to
different types of features for clarity; for example, red is used to denote racial features, while green indicates
occupation features. From the results, we observe that: (i) When the performances are similar (82% v.s. 83%),
the LR model is less sensitive to input features, compared with the MLP model, which corresponds with the
well-known Occam’s Razor. (ii) Interestingly, our stability criterion reveals that both the MLP and LR models
exhibit a notable sensitivity to the racial feature “American Indian”. This raises concerns regarding potential
racial discrimination and unfairness towards this specific demographic group. It is important to highlight
that an individual’s race should not be a determinant factor in predicting their income, and the heightened
sensitivity to this feature suggests a need for careful examination and potential mitigation of biases in the
models before deployment.

Building on our initial observations, we conduct an in-depth analysis of the accuracy across different
racial groups for both the LR and MLP models. The findings, as shown in Figure 8b, align with our earlier
feature stability results. Notably, the accuracy for the worst-performing racial group is significantly lower
compared to other groups (for instance, a decrease from 82% to 72% in the case of the MLP model). Such
findings indicate that both the LR and MLP models, when trained using ERM, exhibit unfairness towards
minority racial groups. In light of these insights, our feature stability analysis serves as a valuable tool to
identify and prevent the deployment of models that may perpetuate such disparities in practice.

Subsequently, we use adversarial training as an algorithmic intervention to enhance model performance.
Figure 8b illustrates the results of this intervention: AT denotes adversarial training that perturbs all racial
features, whereas targeted AT specifically perturbs the identified sensitive racial feature “American Indian”.
The results indicate that targeted AT markedly outperforms all baseline models, achieving a significant
improvement in accuracy for the worst-performing racial group. This outcome effectively demonstrates the
utility of our feature stability analysis in guiding targeted improvements to model performance and fairness.
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(c) PubCov Prediction: Feature Stability
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Figure 8: Feature sensitivity analysis for income prediction and public coverage prediction. Figure (a) and (c):
the top-5 sensitive feature scores for MLP and LR in the income prediction and the public coverage (PubCov)
prediction tasks, where a smaller score means the corresponding feature is more sensitive. Figure (b) and (d):
the worst racial group accuracy for MLP, LR, AT, and targeted AT in the income prediction and the public
prediction tasks.
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Public coverage prediction
We replicated the aforementioned experiment on the ACS PubCov dataset, which involves predicting an
individual’s public health insurance status. Following the previous setup, we identify and display the top-5
most sensitive features for both LR and MLP models in Figure 8c. Additionally, Figure 8d presents the
accuracy for the worst-performing racial group for each method.

The findings reveal several key insights: (i) The MLP model outperforms the LR model in this context
(71% vs. 67%), and it exhibits less sensitivity to input features. This observation suggests that feature
sensitivity is influenced by both the nature of the task and the characteristics of the model. (ii) Consistent with
previous results, the “American Indian” racial feature is identified as sensitive in both models. The accuracy of
the worst-performing racial group further underscores the presence of discrimination against minority groups.
(iii) Leveraging our feature stability analysis, targeted AT achieves the most notable improvement. This again
underscores the effectiveness of our evaluation method in enhancing model performance and fairness.

COVID-19 mortality prediction

We use the COVID-19 dataset, and the task is to predict the mortality of a patient based on features including
comorbidities, symptoms, and demographic characteristics. For the LR and MLP models trained with ERM,
we follow the outlines in Section 2.4 and identify the top-5 most sensitive features, as shown in Figure 9a.
From the results, we observe that: (i) Consistent with the trends observed in the income prediction task, the LR
model demonstrates lower sensitivity to input features compared to the MLP model when their performance
levels are comparable; (ii) Notably, both LR and MLP models are quite sensitive to the “Age” feature. Given
the variety of risk factors for COVID-19, such as comorbidities and symptoms, it is concerning that these
models might overemphasize age, which is not the sole determinant of mortality. This highlights a critical
need to ensure models effectively account for diverse age groups and do not rely excessively on age as a
predictive factor.
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Figure 9: Results of the COVID-19 mortality prediction task. (a): The top-5 most sensitive features for MLP
and LR, respectively. (b): The prediction accuracy (upper sub-figure) and macro F1 score (lower sub-figure)
before and after algorithmic intervention on the LR model.

Building on these insights, we further evaluate the accuracy and macro F1 score across different age
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groups for the LR model. As illustrated in Figure 9, the accuracy for younger individuals (age < 40) and older
individuals (age ≥ 70) is notably high (the blue bars in the upper sub-figure). However, their corresponding
macro F1 scores are significantly lower (as shown by the blue bars in the lower sub-figure). This suggests that
the LR model may overly rely on the age feature for making predictions. For example, it tends to predict
survival for younger individuals and mortality for older individuals with high probability, irrespective of other
relevant clinical indicators. Such a simplistic approach raises concerns about the model’s ability to provide
nuanced predictions for these age groups.

Considering the possibility of varied mortality prediction mechanisms among different age groups, we
propose a targeted algorithmic intervention: training distinct LR models for each age group. From the lower
sub-figure in Figure 9, we see a substantial improvement in macro F1 scores for both younger and older
populations.

From these three real-world experiments, we demonstrate how the proposed feature stability analysis can
help discover potential discrimination and inform targeted algorithmic interventions to improve the model’s
reliability and fairness.

5 Closing Remarks

This work proposes an OT-based stability criterion that allows both data corruptions and sub-population shifts
within a single framework. Applied to three real-world datasets, our method yields insightful observations into
the robustness and reliability of machine learning models, and suggests potential algorithmic interventions
for further enhancing model performance. The utility of our stability evaluation criterion to modern model
architectures (e.g., Transformer, tree-based ensembles) and popular real-world applications (e.g., LLMs) is
natural to further explore.

Impact Statements

In this paper, we propose an OT-based stability criterion that addresses the challenges posed by both data
corruptions and sub-population shifts, offering a comprehensive approach to evaluating the robustness of
machine learning models. The potential broader impact of this work is significant, particularly in providing
a principle approach to evaluate fairness and reliability of models deployed in real-world scenarios (based
on specified criteria which we take as given). By enabling more nuanced assessments of model stability,
our criterion can help prevent the deployment of biased or unreliable models, thereby contributing to
more equitable outcomes, especially in high-stakes applications like healthcare, finance, and social welfare.
Furthermore, our work underscores the necessity of considering and mitigating potential biases and unfairness
in automated decision-making systems. As machine learning continues to play an increasingly integral role in
societal functions, the tools and methodologies developed in this study provide crucial steps towards ensuring
that these technologies are used responsibly and ethically.
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A Proofs

A.1 Proof of Theorem 2.1

Proof. To start with, we first reformulation the primal problem (P) into an infinite-dimensional linear program:

inf
π

Eπ[c((Z,W ), (Ẑ, Ŵ ))]

s. t. π ∈ P((Z ×W)2)

r − Eπ[W · ℓ(β, Z)] ≤ 0

Eπ[W ] = 1

π(Ẑ,Ŵ ) = P̂.

(Primal)

We aim to apply Sion’s minimax theorem to the Lagrangian function

L(π;h, α) = hr + α+ Eπ[c((Z,W ), (Ẑ, Ŵ ))− h ·W · ℓ(β, Z)− α ·W ],

where h ∈ R+, α ∈ R, and π belongs to the primal feasible set

ΠP̂ =
{
π ∈ P((Z ×W)2) : π(Ẑ,Ŵ ) = P̂

}
.

Since Z ×W is compact, it follows that P(Z ×W) is tight. Furthermore, as a subset of a tight set is also
tight, we conclude that ΠP̂ is tight as well. Consequently, according to Prokhorov’s theorem (Van der Vaart,
2000, Theorem 2.4), ΠP̂ has a compact closure. By taking the limit in the marginal equation, we observe that
ΠP̂ is weakly closed, establishing that ΠP̂ is indeed compact. Moreover, it can be readily demonstrated that
ΠP̂ is convex.

The Lagrangian function L(π;h, α) is linear in both π and (h, α). To employ Sion’s minimax theorem, we
will now prove that (i) L(π;h, α) is lower semicontinuous in π under the weak topology and (ii) continuous
in (h, α) under the uniform topology in R+ × R.

(i) Suppose that πn converges weakly to π. Then, Portmanteau theorem states that for any lower
semicontinuous function g that is bounded below, we have

lim inf
n→+∞

∫
g dπn ≥

∫
g dπ.

Since ℓ(β, ·) is upper semicontinuous for all β and w, h ≥ 0, we can conclude that h · w · ℓ(β, z) is upper
semicontinuous w.r.t (z, w). Moreover, armed with the lower semicontinuity of the function c((z, w), (ẑ, ŵ)),
we know the following candidate function

c((z, w), (ẑ, ŵ))− h · w · ℓ(β, z)− α · w

is lower semicontinuous with respect to (z, w) for any (ẑ, ŵ) ∈ Z ×W . As Z ×W is compact, the above
candidate function is also bounded below. Thus, we have

lim inf
n→+∞

L(πn;h, α) ≥ L(π;h, α).

It follows that L(π;h, α) is lower semicontinuous in π under the weak topology.
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(ii) Suppose now that limn→+∞ hn = h in the Euclidean topology and limn→∞ αn = α in the Euclidean
topology. There exists h̄ ∈ R+ and ᾱ ∈ R with supn→∞ |hn| ≤ h̄ and supn→∞ |αn| < ᾱ for all n ≥ 1.
Thus, by the dominated convergence theorem, we have

lim
n→+∞

L(π;hn, αn) = L(π;h, α).

We then conclude that L(π;h, α) is continuous in (h, α) under the Ecludiean topology in R+ × R.
We are now prepared to utilize Sion’s minimax theorem, and thus, we have:

inf
π∈ΠP̂

sup
h∈R+,α∈R

L(π;h, α) = sup
h∈R+,α∈R

inf
π∈ΠP̂

L(π;h, α). (A.1)

Our subsequent task involves demonstrating the equivalence between the left-hand side of (A.1) and the
primal problem (Primal). To achieve this, we will re-express the function L as follows:

L(π;h, α) = Eπ[c((Z,W ), (Ẑ, Ŵ )] + h (r − Eπ[W · ℓ(β, Z)]) + α(1− Eπ[W ]).

Then, we can see infπ∈ΠP̂
suph∈R+,α∈R L(π;h, α) is bounded above. To start with, we construct a single

support distribution as follows: Q0 = δ(z⋆,1) where z⋆ = argmaxz∈Z ℓ(β, z). Then, we have

inf
π∈ΠP̂

sup
h∈R+,α∈R

L(π;h, α) ≤ sup
h∈R+,α∈R

L(Q0 ⊗ P̂;h, α),

= EQ0⊗P̂[c((Z,W ), (Ẑ, Ŵ ))] + sup
h∈R+

h(r − r̄) < +∞,

where the second inequality follows from EQ0 [W ] = 1 and the last equality holds as we know r ≤ r̄ =
EQ0 [ℓ(β, Z)] = maxz∈Z ℓ(β, Z) and c is continuous and hence bounded on a compact domain Z ×W . For
any feasible point π ∈ ΠP̂, let us consider the inner supremum of the left-hand-side of (A.1), ensuring it
doesn’t go to infinity. In this case, we find that

r − Eπ[W · ℓ(β, Z)] ≤ 0

Eπ[W ] = 1.

It remains to be shown that the sup-inf part is equivalent to the dual problem (D). To do this, we rewrite the
dual problem as

sup
h∈R+,α∈R

inf
π∈ΠP̂

L(π;h, α).

= sup
h∈R+,α∈R

hr + α+ inf
π∈ΠP̂

Eπ[c((Z,W ), (Ẑ, Ŵ ))− h ·W · ℓ(β, Z)− α ·W ].

The last step is to take the supremum of L over π ∈ ΠP̂. That is,

inf
π∈ΠP̂

Eπ[c((Z,W ), (Ẑ, Ŵ ))− h ·W · ℓ(β, Z)− α ·W ]

= EP̂

[
min

(z,w)∈Z×W
c((z, w), (Ẑ, Ŵ ))− h · w · ℓ(β, z)− α · w

]
,

due to the measurability of functions of the form min(z,w)∈Z×W c((z, w), (Ẑ, Ŵ ))− h · w · ℓ(β, z)− α · w,
following the similar argument in (Blanchet and Murthy, 2019). ■
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A.2 Proof of Proposition 2.1

Proof. Now, we are trying to calculate the surrogate function with our proposed cost function c in (2.1) .
Then, we have

ℓ̃α,hc (β, (ẑ, ŵ)) = min
(z,w)∈Z×W

θ1 · w · d(z, ẑ) + θ2(ϕ(w)− ϕ(ŵ))+ − αw − h · w · ℓ(β, z)

=min
z∈Z

θ2 ·min
w∈R
−wh · ℓ(β, z)− θ1 · d(z, ẑ) + α

θ2
+ ϕ(w) + IW(w)

=min
z∈Z
−θ2 · (ϕ+ IW)∗

(
h · ℓ(β, z)− θ1 · d(z, ẑ) + α

θ2

)
.

where the first equality follows as Ŵ = 1 almost surely and ϕ(1) = 0, and the second equality holds due to
the definition of conjugate functions.

(i) WhenW = R+ and ϕ(t) = t log t− t+ 1, we know its conjugate function (ϕ+ IR+)
∗ = exp(t)− 1.

Consequently, we obtain the following:

ℓ̃α,hc (β, (ẑ, ŵ)) = min
z∈Z
−θ2 · exp

(
h · ℓ(β, z)− θ1 · d(z, ẑ) + α

θ2

)
+ θ2

= −θ2 · exp
(
maxz∈Z h · ℓ(β, z)− θ1 · d(z, ẑ) + α

θ2

)
+ θ2

= −θ2 · exp
(
ℓh,θ1(ẑ) + α

θ2

)
+ θ2.

where the second equality follows from the fact the function exp(·) is monotonically increasing. Hence, we
can reformulate the dual problem (D) as

R(β, r) = sup
h∈R+,α∈R

hr + α− θ2EP0

[
exp

(
ℓh,θ1(Ẑ) + α

θ2

)]
+ θ2.

Next, we will solve the supremum problem via α and the first-order condition reads

1− exp

(
α

θ2

)
EP0

[
exp

(
ℓh,θ1(Ẑ)

θ2

)]
= 0

and α⋆ = −θ2 log
(

EP0

[
ℓh,θ1 (Ẑ)

θ2

])
. Put all of them together, we get

R(β, r) = sup
h∈R+

hr − θ2 log

(
EP0

[
exp

(
ℓh,θ1(Ẑ)

θ2

)])
.

(ii) When W = R+ and ϕ(t) = (t − 1)2, the conjugate function can be computed as (ϕ + IR+)
∗(t) =

( t2 + 1)2+ − 1. Additionally, it is straightforward to demonstrate that (ϕ + IR+)
∗(t) is a monotonically

increasing function. Hence, we have:

ℓ̃α,hc (β, (ẑ, ŵ)) =min
z∈Z
−θ2 · (ϕ+ IW)∗

(
h · ℓ(β, z)− θ1 · d(z, ẑ) + α

θ2

)
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=min
z∈Z
−θ2 ·

(
h · ℓ(β, z)− θ1 · d(z, ẑ) + α

2θ2
+ 1

)2

+

+ θ2

=− θ2 ·
(
ℓh,θ1(ẑ) + α

2θ2
+ 1

)2

+

+ θ2

where the third equality holds as the monotonicity of (ϕ+ IR+)
∗. Then, we can reduce the dual problme (D)

as

sup
h≥0,α∈R

hr + α+ θ2 − θ2EP0

(ℓh,θ1(Ẑ) + α

2θ2
+ 1

)2

+

 .

■

Remark A.1. We want to highlight the distinction between the KL and χ2-divergence cases. In the latter
case, we are unable to derive a closed-form expression for the optimal α⋆. Instead, we must reduce it to a
solution of a piecewise linear equation as follows:

EP0

[(
ℓh,θ1(Ẑ) + α

2θ2
+ 1

)
+

]
= 1. (A.2)

□

A.3 Proof of Theorem 2.2

Proof. By introducing epigraphical auxiliary variable t ∈ R, we know problem (2.2) is equivalent to

min
h≥0
−hr + θ2 logEP0

[
exp

(
ℓh,θ1(Ẑ)

θ2

)]

=


min −hr + t

s. t. h ∈ R+, t ∈ R

θ2 logEP0

[
exp

(
ℓh,θ1 (Ẑ)

θ2

)]
≤ t

(A.3)

=



min −hr + t

s. t. λ ∈ R+, t ∈ R, η ∈ Rn
+

(ηi, θ2, ℓh,θ1(ẑi)− t) ∈ Kexp ∀i ∈ [n]

1
n

∑n
i=1 ηi ≤ θ2

=



min −hr + t

s. t. λ ∈ R+, t ∈ R, η ∈ Rn
+, p ∈ Rn

(ηi, θ2, pi − t) ∈ Kexp ∀i ∈ [n]

ℓh,θ1(ẑi) ≤ pi ∀i ∈ [n]

1
n

∑n
i=1 ηi ≤ θ2.

(A.4)
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Here, the second equality can be derived from the fact that the second inequality in problem (A.3) can be
reformulated as

EP0

[
exp

(
ℓh,θ1(Ẑ)− t

θ2

)]
≤ 1.

To handle this constraint, we introduce an auxiliary variable η ∈ Rn
+, allowing us to further decompose it into

n exponential cone constraints and one additional linear constraint. Specifically, we have
1

n

n∑
i=1

ηi ≤ θ2

θ2 exp

(
ℓh,θ1(ẑi)− t

θ2

)
≤ ηi, ∀i ∈ [n]

The third constraint can be further reduced to (A.4) by considering the fact that the set Kexp corresponds to
the exponential cone, which is defined as

Kexp =
{
(x1, x2, x3) ∈ R3 : x1 ≥ x2 · exp

(
x3
x2

)
, x2 > 0

}
∪ {(x1, 0, x3) ∈ R3 : x1 ≥ 0, x3 ≤ 0}.

The fourth equality is due to ℓh,θ1(ẑi) ≤ pi when we introduce auxiliary variables pi.
Next, we show that ℓh,θ1(ẑi) ≤ pi admits the following equivalent forms

ℓh,θ1(ẑi) ≤ pi

⇐⇒ sup
z∈Z

{
h · max

k∈[K]
y · a⊤k x+ bk−θ1d(z, ẑi)

}
≤pi

⇐⇒ sup
z∈Z

{
h · y · a⊤k x+ bk−θ1d(z, ẑi)

}
≤pi ∀k ∈ [K]

⇐⇒ sup
x∈Rd

{
h · ŷi · a⊤k x+ bk−θ1∥x− x̂i∥22

}
≤pi ∀k ∈ [K]

⇐⇒ ∥ak∥
2
2

4θ1
· h2 + ŷi · aTk x̂i · h+ bk ≤ pi, ∀k ∈ [K]

(A.5)

where the second equivalence arises from the non-negativity of h, while the third one can be derived from the
nature of the cost function, which is defined as d(z, ẑi) = ∥x− x̂i∥22 +∞ · |y − ŷi|. The second term in the
cost function prevents us from perturbing the label due to the imposed budget limit.

Put everthing together, we have

min −hr + t

s. t. λ ∈ R+, t ∈ R, η ∈ Rn
+, p ∈ Rn

(ηi, θ2, pi − t) ∈ Kexp ∀i ∈ [n]

∥ak∥22
4θ1
· h2 + ŷi · aTk x̂i · h+ bk ≤ pi, ∀k ∈ [K], ∀i ∈ [n]

1
n

∑n
i=1 ηi ≤ θ2.

■

26



A.4 Proof of Theorem 2.3

Proof. By introducing epigraphical auxiliary variable t ∈ R, we know problem (2.2) is equivalent to

min
h≥0,α∈R

−hr − α+ θ2 + θ2EP0

(ℓh,θ1(Ẑ) + α

2θ2
+ 1

)2

+



=


min −hr − α+ t

s. t. h ∈ R+, α ∈ R, t ∈ R

θ2EP0

[(
ℓh,θ1 (Ẑ)+α

2θ2
+ 1

)2

+

]
≤ t

=



min −hr + t

s. t. h ∈ R+, α ∈ R, t ∈ R, η ∈ Rn
+

ℓh,θ1(ẑ) + 2θ2α+ 2θ2 ≤ 2θ2ηi ∀i ∈ [n]

θ2
n

∑n
i=1 η

2
i ≤ t

=



min −hr + t

s. t. h ∈ R+, α ∈ R, t ∈ R, η ∈ Rn
+

∥ak∥22
4θ1
· h2 + ŷi · aTk x̂i · h+ bk + 2θ2α+ 2θ2 ≤ 2θ2ηi ∀k ∈ [K],∀i ∈ [n]

θ2
n

∑n
i=1 η

2
i ≤ t

Here, the second equality follows from the fact that the constraint can be reformulated as
θ2
n

n∑
i=1

η2i ≤ t

ℓh,θ1(ẑ) + 2θ2α+ 2θ2 ≤ 2θ2ηi, ηi ∈ R+.

as the function (·)2+ is monotonically increasing. The last equality holds due to (A.5) . ■

B Pseudo-code for Algorithms

In this section, we provide the pseudo-code of our algorithms. For ϕ(t) = t log t − t + 1, please refer to
Algorithm 1, and for ϕ(t) = (t− 1)2, please see Algorithm 2.
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Algorithm 1 Stability evaluation with general nonlinear loss functions (ϕ(t) = t log t− t+ 1).
1: Input: trained model fβ(·), samples {ẑi}ni=1, adjustment parameters θ1, θ2, pre-defined threshold r;
2: Hyper-parameters: outer iteration number Tout, inner iteration number Tin, learning rates η, γ;
3: Initialize for i ∈ [n], set z(0)i ← ẑi, and h(0) = 1;
4: for t = 0 to Tout − 1 do
5: for k = 0 to Tin − 1 do

6: For i ∈ [n], z(k+1)
i ← z

(k)
i + η · ∇Z

(
h(t)ℓ(β, z

(k)
i )− θ1d(z

(k)
i , ẑi)

)
(update samples using ADAM

optimizer)
7: end for
8: Update the dual parameter using ADAM optimizer as:

h(t+1) ← h(t) + γ · ∇h

(
h(t)r − θ2 log

n∑
i=1

[
exp(

h(t)ℓ(β, z
(Tin)
i )− θ1d(z

(Tin)
i , ẑi)

θ2
)

])
9: end for

10: Output: stability criterion R(β, r) (Equation (2.2)), the most sensitive distribution Q̂∗ (according to
Remark 2.4).

Algorithm 2 Stability evaluation with general nonlinear loss functions (ϕ(t) = (t− 1)2)
1: Input: trained model fθ(·), samples {ẑi}ni=1, adjustment parameters θ1, θ2, mis-classification threshold

r;
2: Hyper-parameters: outer iteration number Tout, inner iteration number Tin, learning rates η, γh, γα;
3: Initialize for i ∈ [n], set z(1)i ← ẑi, and h(1) = 1;
4: for t = 1 to Tout do
5: for k = 1 to Tin do

6: For i ∈ [n], z(k+1)
i ← z

(k)
i + η · ∇Z

(
h(t)ℓ(β; z

(k)
i )− θ1d(z

(k)
i , ẑi)

)
;

(update samples using ADAM optimizer)
7: end for
8: Compute α∗ via Equation A.2;
9: Update the dual parameter using ADAM optimizer as:

h(t+1) ← h(t) + γ · ∇h

(
hr + α∗ + θ2 − θ2

n∑
i=1

(
ℓh,θ1(β, z

(Tin)
i ) + α∗

2θ2
+ 1

)2

+

)
; (B.1)

10: end for
11: Output: stability criterion R(β, r) (Equation (2.2)), the most sensitive distribution Q̂∗ (according to

Remark 2.4).
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