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Background

Machine learning algorithms have been widely applied in prediction and
decision-making systems.
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Real-World Challenges of AI Systems

Biases exist in AI systems.
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System Level of View of AI

Building a reliable AI stack requires a holistic view.

• Previous: focus on model training

• Now: focus on evaluation & deployment
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Invariant Risk Minimization

Assume existence of feature Φ(X) such that Y |Φ(X) is invariant across
environments. Then, learn this feature.
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Distributionally Robust Optimization
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Advertisement:)

We made a python package for “Distributionally Robust Optimization”.

• 14 DRO formulations and 9 backbone models

• https://python-dro.org
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Previous Philosophy

from ASSUMPTION to Algorithm

• assume there’s a causal structure, and no hidden confounders →
causal algorithms

• assume the test distribution is near the training distribution →
distributionally robust optimization methods

However, do those assumptions really hold in practice?
No idea!
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Previous Philosophy

Not really!
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What we’re calling for

from UNDERSTANDING to Algorithm

• shift the focus from model training to evaluation & deployment
• Evaluation Stage:

• understand your model’s stability under potential shifts → Model
Stability Evaluation

• understand your model’s underperformed regions within distribution →
Risk Region Analysis

• Deployment Stage:
• understand your model’s performance drop between distributions→

Performance Drop Diagnosis

Better understanding enables more efficient improvements!
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Stability Evaluation

Problem: How do we evaluate the stability of a learning model (like
neural networks and LLMs) when subjected to data perturbations?

Two classes of data perturbations:

• Data corruptions: changes in the distribution support (i.e., observed
data samples).

• Sub-population shifts: perturbation on the probability density or mass
function while keeping the same support.
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Example: Data Corruptions

Measurement Error/Noises
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Example: Sub-population Shifts

AI Systems can be biased against the minority groups
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Preliminary

• OT discrepancy with moment constraints [1]

Mc(Q,P) =


inf Eπ[c((Z,W ), (Ẑ, Ŵ ))]
s.t. π ∈ P((Z ×W)2)

π(Z,W ) = Q, π(Ẑ,Ŵ ) = P
Eπ[W ] = 1 π-a.s,

where π(Z,W ) and π(Ẑ,Ŵ ) are the marginal distributions of (Z,W ) and

(Ẑ, Ŵ ) under π.

• Lift the original sample space Z to a higher dimensional space Z ×W —
perturb on a joint (sample, density) space.

• We choose the cost function as:

c((z, w), (ẑ, ŵ)) = θ1 · w · (∥x− x̂∥22 +∞ · |y − ŷ|)︸ ︷︷ ︸
differences between samples

+ θ2 · (ϕ(w)− ϕ(ŵ))+.︸ ︷︷ ︸
differences in probability mass
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Formulation

Given a learning model fβ and the distribution P0 ∈ P(Z), we formally introduce
the OT-based stability evaluation criterion as

R(β, r) =


inf

Q∈P(Z×W)
Mc(Q, P̂)

s.t. EQ[W · ℓ(β, Z)]︸ ︷︷ ︸
risk under Q

≥ r︸︷︷︸
threshold

. (P)

Larger R(β, r) ⇒ More Stable

• Quantify the minimum level of perturbations required for the model’s
performance to degrade to a predetermined risk threshold.

• P̂: The reference measure selected as P0 ⊗ δ1, with δ1 denoting the Dirac
delta function.

• r > 0: the pre-defined risk threshold (according to policies or ML engineers).

• θ1, θ2: Control the relative strength of data corruption and reweighting.
When θ1 → ∞, the measure degenerates to Namkoong et al. [4].
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Illustrations

Projection distance to the distribution set where the model performance
falls below a specific threshold.

!ℙ = ℙ!⊗𝛿"

ℚ∗
ℚ:𝔼ℚ 𝑊 ⋅ ℓ 𝛽, 𝑍 ≥ 𝑟

ℜ(𝛽, 𝑟)

𝒫(𝒵)ℙ"

𝒫(𝒲)

lift to 
𝒫(𝒵×𝒲)

Figure 1: Data distribution projection in the joint (sample, density) space.
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Strong Duality

Theorem (Strong duality for problem (P))

Suppose that (i) The set Z ×W is compacta, (ii) ℓ(β, ·) is upper
semi-continuous for all β, (iii) the cost function c : (Z ×W)2 → R+ is
continuous; and (iv) the risk level r is less than the worst-case value
r̄ := maxz∈Z ℓ(β, z). Then we have,

R(β, r) = sup
h∈R+,α∈R

hr + α+ EP̂

[
ℓ̃α,hc (β, (Ẑ, Ŵ ))

]
(D)

where the surrogate function ℓ̃α,hc (β, (ẑ, ŵ)) equals to

min
(z,w)∈Z×W

c((z, w), (ẑ, ŵ)) + αw − h · w · ℓ(β, z),

for all ẑ ∈ Z and ŵ ∈ W.

aWhen the reference measure P0 is a discrete measure, some technical conditions
(e.g., compactness, (semi)-continuity) can be eliminated.

Jiashuo Liu Ubiquant, Beijing, China 22 / 53



Dual Reformulation

Theorem (Dual reformulations)

Suppose that W = R+. (i) If ϕ(t) = t log t− t+ 1, then the dual problem (D)
admits:

sup
h≥0

hr − θ2 logEP0

[
exp

(
ℓh,θ1(Ẑ)

θ2

)]
; (1)

(ii) If ϕ(t) = (t− 1)2, then the dual problem (D) admits:

sup
h≥0,α∈R

hr + α+ θ2 − θ2EP0

(ℓh,θ1(Ẑ) + α

2θ2
+ 1

)2

+

 , (2)

where the d-transform of h · ℓ(β, ·) with the step size θ1 is defined as

ℓh,θ1(ẑ) := max
z∈Z

h · ℓ(β, z)− θ1 · d(z, ẑ).

Jiashuo Liu Ubiquant, Beijing, China 23 / 53



Visualizations on Toy Examples

Visualize the most sensitive distribution Q⋆:

Figure 2: Visualizations on toy examples with 0/1 loss function under different
θ1, θ2. The original prediction error rate is 1%, and the error rate threshold r is
set to 30%. The size of each point is proportional to its sample weight in Q⋆

Jiashuo Liu Ubiquant, Beijing, China 24 / 53



Usage 1: MLP Stability Analysis

Task: Predict individual’s income based on personal features.

Under evaluation: MLP models optimized via

• Empirical Risk Minimization (ERM)

• Adversarial Training (AT): designed for robustness to data corruptions

• Tilted ERM: designed for robustness to sub-population shifts

Jiashuo Liu Ubiquant, Beijing, China 25 / 53



Usage 1: MLP Stability Analysis

Insight: A method designed for one class of data perturbation may not be
robust against another.

• AT is not stable under sub-population shifts.

• Tilted ERM is not stable under data corruptions.
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Usage 2: LLM Stability Analysis

Task: Question-answering (general question & harmful question)

Under evaluation: General LLMs

• Llama-2-chat 7B/13B

• Vicuna 7B/13B

• Mistral 7B

• Deepseek-2 7B

• Qwen-2 7B

• ChatGLM-2 6B
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Usage 2: LLM Stability Analysis

Adapt the cost function for LLM:

c((z, w),(ẑ, ŵ)) =

θ2 · (ϕ(w)− ϕ(ŵ))+︸ ︷︷ ︸
reweighting distance

+

θ1 · w ·
(

Φ(x)TΦ(x̂)

∥Φ(x)∥∥Φ(x̂)∥︸ ︷︷ ︸
semantic similarity

·max(
#Token(x)

#Token(x̂)
,
#Token(x̂)

#Token(x)
)

)
︸ ︷︷ ︸

token number ratio︸ ︷︷ ︸
perturbation distance

.
(3)

For minimal data perturbation:

• Preserve the semantic meaning

• Ensure the sentence length is similar to the original
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Usage 2: LLM Stability Analysis

Insight: LLM evaluation should not rely on one single metric.

• Ranking of LLMs changes based on different patterns of distribution
shifts (θ1, θ2), and error rate r.
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Usage 2: LLM Stability Analysis

Insight: Tradeoff in stability between answering harmless and (not answering)
harmful questions.

• Mistral-7B (dark red curve) performs exceptionally well on harmless
question answering, but much badly on (not answering) harmful questions.

• Good semantic reasoning ability makes it easier to be cheated by
“role-playing” prompts.
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Usage 3: Feature Stability Analysis

Feature Stability

• perturbing on which feature will cause model’s performance drop

• providing more fine-grained diagnosis for a prediction model

For i-th feature, choose the cost function as:

c((z, w),(ẑ, ŵ)) =

θ2 · (ϕ(w)− ϕ(ŵ))++

θ1 · w · (∥z(i) − ẑ(i)∥22 +∞ · ∥z(,−i) − ẑ(,−i)∥22)︸ ︷︷ ︸
only allow perturbations on i-th feature

.
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Usage 3: Feature Stability Analysis

Task: predict individual’s income based on personal features
Dataset: ACS Income [2]
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Insight: ERM model focuses too much on the “American Indian” feature,
which may introduce potential fairness problem!
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Usage 4: “Targeted” Algorithmic Intervention

One simple example:

• AT:

min
β

{
EP0 [ϕγ(β, Z)] := EP0

[
sup
z∈Z

ℓ(β, Z)− γc(Z, Ẑ)

]}
, (4)

where c(z, ẑ) = ∥x− x̂∥22 +∞ · |y − ŷ|, and γ is the penalty
hyper-parameter.

• Targeted AT:

min
β

{
EP0 [ϕγ(β, Z)] = EP0

[
sup
z∈Z

ℓ(β, Z)− γc(Z, Ẑ)

]}
. (5)

c(z, ẑ) = ∥z(i) − ẑ(i)∥22 +∞ · ∥z(,−i) − ẑ(,−i)∥22, where z(i) denotes the
target feature of z, z(,−i) denotes all the other features and γ is the
penalty hyper-parameter.
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Usage 4: “Targeted” Algorithmic Intervention

Insight: Feature stability can motivate refined algorithmic intervention.
• for AT, only perturb the identified sensitive racial feature “American Indian”

• significantly increase the worst racial group accuracy

• align with the empirical findings in WhyShift [3, Section 5]
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Takeaways

• A stability measure for ML models (both neural networks and LLMs)
based on optimal transport.

• Consider different data perturbations at the same time.

• Help to understand why model fails, and guide targeted algorithmic
interventions.

Evaluate → Understand → Improve

Refer to our papers for more details:
• Jose Blanchet, Peng Cui, Jiajin Li, and Jiashuo Liu (α-β). Stability

Evaluation through Distributional Perturbation Analysis. ICML 2024.
https://arxiv.org/pdf/2405.03198

• Jiashuo Liu, Jiajin Li, Peng Cui, and Jose Blanchet. Stability Evaluation of
Large Language Models via Distributional Perturbation Analysis. NeurIPS
2024 Workshop on Red Teaming GenAI.
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Risk Region Analysis

Problem: Beyond the overall performance, how do we understand where
our model performs well and where not?

A simple but effective method: fit a decision tree to predict the sample
loss from covariates.
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Risk Region Analysis

Enable “smart” deployment in practice.
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Broader: Error Slice Discovery

Figure from https://ai.stanford.edu/blog/domino/

Jiashuo Liu Ubiquant, Beijing, China 39 / 53

https://ai.stanford.edu/blog/domino/


Takeaways

• A detailed understanding of model performance enables “smart”
model deployment & data collection.

Refer to our papers for more details:
• Jiashuo Liu, Nabeel Seedat, Peng Cui, Mihaela van der Schaar. Going

Beyond Static: Understanding Shifts with Time-Series Attribution. ICLR
2025. https://openreview.net/pdf?id=XQlccqJpCC

• Jiashuo Liu, Tianyu Wang, Peng Cui, Hongseok Namkoong. On the Need
for a Language Describing Distribution Shifts: Illustrations on Tabular
Datasets. NeurIPS 2023. https://arxiv.org/pdf/2307.05284v1
(Two Sigma NeurIPS 2023 Favorite Paper)

• Other papers on error slice discovery.
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Problem Setting

When observing performance drop, how to attribute the drop to each
time-series feature? Trend changes? Covariance changes?
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Time-Series to Static Problem

Extract multiple temporal properties from time-series data.

Sufficiency measure to evaluate the optimal predictive power:

Suff.(X̃) = min
g∈G

E[Loss(g(X̃), ℓ(f(X), Y ))]
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Attribution

Define the conditional risk as:

RP(X̃−S) = EP[ℓ(f(X), Y )|X̃−S ], (6)

RQ(X̃−S) = EQ[ℓ(f(X), Y )|X̃−S ]. (7)

The attribution score is defined as:

Attr.(S) = E[RQ(X̃−S)−RP(X̃−S)] (8)

• similar to average treatment effect estimation

• Attr.(∅) captures Y |X-shifts
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Algorithm

Doubly Robust Estimator:

Âttr.(S) =
1

nP + nQ

( nP+nQ∑
i=1

(
µ̂Q(X̃

i
−S)− µ̂P(X̃

i
−S)

)
+

nQ∑
j=1

RQ(X̃
j
−S)− µ̂Q(X̃

j
−S)

π(X̃j
−S)

−
nP∑
i=1

RP(X̃
i
−S)− µ̂P(X̃

i
−S)

1− π(X̃i
−S)

)

where π(x−S) = Pr(x−S from Q).

Theoretical Results:

• Unconfoundedness & Unbiasedness

• Consistency
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Model Architecture

We use DragonNet for sample efficiency:
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Age Shifts in Mortality Risk Prediction

• Correctly attribute the performance drop to age-related features

• Balance the ”bins” and retrain the model

• Diagnosis → simple but effective model intervention
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Preemptive Diagnosis under Temporal Shifts

• Temporal properties are the most important.
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Other Forms: X-Shifts vs Y |X-Shifts
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Other Forms: X-Shifts vs Y |X-Shifts
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Takeaways

• We need an inductive way to deal with distribution shifts.

• Understanding distribution shift is important.

• More methods are needed:)

Refer to our paper for more details:
• Jiashuo Liu, Nabeel Seedat, Peng Cui, Mihaela van der Schaar. Going

Beyond Static: Understanding Shifts with Time-Series Attribution. ICLR
2025. https://openreview.net/pdf?id=XQlccqJpCC
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Future Works

Toward Self-Robustifying Agents

• Extend current stability evaluation into an online self-monitoring
module

• Integrate with a response policy engine (LLMs/RAGs) to
suggest/perform actions under distribution shifts

• Form a closed-loop agent system that can evaluate → diagnose →
adjust
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